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Základní horizontální logolink

Logolink je tvořen logem Evropského sociálního fondu, Ev-
ropské unie, logem Ministerstva školství, mládeže a tělový-
chovy, logem Operačního programu Vzdělávání pro konku-
renceschopnost, a je doplněn sloganem.
Pořadí, velikost, proporce, vzdálenost jednotlivých log a slo-
ganu od sebe je pevně dána tímto manuálem viz strana 15.
Slogan je nutné použít vždy. U malých propagačních 
předmětů (viz strana 44) platí výjimka a slogan není nut-
né použít.

Barevnost a vzhled log jsou pevně dány manuály vizuálního 
stylu pro jednotlivá loga.
Tento manuál řeší pouze jejich vzájemné proporce a rozmís-
tění vzhledem k dalšímu použití logolinku na různých tisko-
vých, propagačních a informačních materiálech.

Popis základního horizontálního logolinku se sloganem

13

Základní horizontální verze logolinku v češtině

Základní horizontální verze logolinku v angličtině
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Part I - Introduction

Motivations, Modelling, Sampling
Basics of Probability and Statistics

R. Emilion (DAMOL) Relational Data Analysis, Sept 2-5, 2013, Olomouc September 4, 2013 3 / 51



I.1 Motivations 4 / 51

• Context C = (I, J,D) (Binary matrix case), L its concept lattice.

• Examples of complex and time consuming tasks: listing L, frequent itemsets, associative
rules

• Probabilistic and Statistical methods can bring a specific insight to these taks using:
1. Modeling

2. Sampling, Bootstrapping

3. Simulation
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I.2 Modeling 5 / 51

• Model: Mathematical representation that can describe/mimic a real system
• Deterministic models, Probabilistic (Stochastic) models

• Ex. Modeling a real context (and L, if possible) submitted to a random environment:
customer purchases, meteorological measurements, patient diseases ...

• Observed measurements are considered outcomes of a probabilistic model.
• Statistics tasks:
- Model Fitting: Estimation of the model parameters from the observations
- Performing Tests and proposing Confidence Intervals

- Model selection

• Some Interest of models:
Framework for exact computations (concerning, e.g., L) and for prediction
Framework for finding the true concepts and not only the empirical concepts
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I.3 Sampling 6 / 51

• Consider a given C or L as a population: Sample, Bootstrap individuals from C or from L
• Application : Concept Counting (estimating |L|), and quickly check the feasibility of a
potentially exponential time listing of all concepts
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I.4 Measurable spaces 7 / 51

• Let Ω a nonvoid set and P(Ω) its power set
• Let F be a σ-algebra on Ω, i.e:
F ⊆ P(Ω), ∅ ∈ F , stable by complementation (c), and countable union (∪n)
Measurable space: (Ω,F)
• Elements of F are called measurable sets

Examples :
- Ω countable (finite set, N,Z,Q) and F = P(Ω)
- intersection of a family of σ-algebra
- Let A ⊆ P(Ω), the intersection of all the σ-algebras containing A is the smallest
σ-algebra containing A, it is called the σ-algebra generated by A and is denoted by σ(A)
- Ω = R , F = σ(I), I denoting the set of all intervals
- Ω = Ω1 × Ω2, F = σ({F1 × F2, F1 ∈ F1, F2 ∈ F2} is denoted F1 ⊗ F2

- Ω = R2,Rd,Mm×n(R)
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I.5 Probability spaces 8 / 51

• A probability measure P on (Ω,F) is a mapping P : F −→ [0, 1] such that
P(Ω) = 1,P(∪An) =

�
n
P(An) for pairwise disjoint An

Probability space: (Ω,F ,P)

• Examples Ω finite P(A) = |A|
|Ω| . Ω = {ω1, . . . ,ωn, . . .},P(ωn) = pn ≥ 0,

�
n
pn = 1.

Ω = [0, 1], P([a, b]) = b− a, 0 ≤ a ≤ b ≤ 1

• A nullset N is a N ∈ F : P(N) = 0
• Let prop be a property which an element ω ∈ Ω may or may not have. We will say that
prop holds almost everyhere (a.e.) if {ω ∈ Ω : prop(ω) is false} is a nullset

• A family of events Ai ∈ F , i ∈ I is independent if for any finite subset J ⊆ I we have
P(∩j∈JAj) =

�
j∈J P(Aj)

• A family Fi, i ∈ I of sub σ-algebras of F is independent if any family Ai, i ∈ I, with
Ai ∈ Fi, is independent
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I.6 Random variables 9 / 51

• Let (Ω,F ,P) be a probability space and (V,V) a measurable space. A V -valued random
variable is a mapping X : Ω −→ V which is measurable, i.e. X−1(V) ⊆ F

• Recall that if B ∈ V, X−1(B) = {ω ∈ Ω : X(ω) ∈ B} = {X ∈ B}
X−1(V) = {X−1(B), B ∈ V} is the smallest σ-algebra which makes X measurable
X−1(V) is denoted σ(X): σ-algebra generated by X

• PX(B) = P(X−1(B)) defines a probability measure on V called the (probability)
distribution of X: shortly X ∼ PX

Examples V = N,PX({n}) = P(X = n) = e−θ θ
n

n! . X ∼ Poisson(θ), θ > 0
V = R,PX(B) = P(X ∈ B) =

�
B
f(x)dx with f ≥ 0,

�
R f(x)dx = 1.

• Xi, i ∈ I are said independent (i) iff the σ-algebras σ(Xi) are independent
• Xi, i ∈ I are said identically distributed (i.d.) iff PXi = PXi� for all i, i

� ∈ I
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X−1(V) is denoted σ(X): σ-algebra generated by X

• PX(B) = P(X−1(B)) defines a probability measure on V called the (probability)
distribution of X: shortly X ∼ PX

Examples V = N,PX({n}) = P(X = n) = e−θ θ
n

n! . X ∼ Poisson(θ), θ > 0
V = R,PX(B) = P(X ∈ B) =

�
B
f(x)dx with f ≥ 0,

�
R f(x)dx = 1.

• Xi, i ∈ I are said independent (i) iff the σ-algebras σ(Xi) are independent
• Xi, i ∈ I are said identically distributed (i.d.) iff PXi = PXi� for all i, i

� ∈ I
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I.7 Statistics, Computer simulation 10 / 51

• Outcome of X : X(ω) for some ω ∈ Ω. Can be any object : number, function, fuzzy set,

• A sample of X : r.v.s X1, . . . Xn : Xi

i.i.d.∼ PX

Observed sample : outcome x1, . . . xn of a sample, i.e. xi = Xi(ω)

• A statistic is a measurable function T (X1, . . . Xn) of a sample: it is a r.v.

Examples X̄ = X1+...+Xn
n

, S2 = (X1−X̄)2+...+(Xn−X̄)2

n
, S =

√
S2.

Observed statistic T (x1, . . . xn): it is a number.

Examples x̄ = x1+...+xn
n

, s2 = (x1−x̄)2+...+(xn−x̄)2

n
, s =

√
s2.

• LNL: For almost all (a.a.) ω, X̄(ω) −→ E(X) as n → ∞

• Simulation: algorithm whose outputs mimic outcomes of a sample. Ex. (R)

x = runif(100) → x1, . . . , x100 with Xi

i.i.d.∼ λ[0,1] , mean(x) � 0.5 for a.a. simulations
p = c(0.3, 0.5, 0.2), x = sample(1 : 3, 100, prob = p) : sample from a discrete r.v.

y = rnorm(100) → y1, . . . , y100 with Yi
i.i.d.∼ N (0, 1), mean(y) � 0 for a.a. simulations
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II - Models of random binary contexts

Bernoulli Model
Hierarchical Bernoulli Models
Indian Buffet
Latent Block Model

R. Emilion (DAMOL) Relational Data Analysis, Sept 2-5, 2013, Olomouc September 4, 2013 11 / 51



II.1 Bernoulli(p) Model: Simulation 12 / 51

D = m× n random binary matrix

mn entries
i.i.d.∼ Bern(p), P(X = 1) = p,P(X = 0) = 1− p

Illustration In R software : D = matrix(rbinom(m*n,1,p), m,n)

m = 10 rows (customers, objects), I = 1, . . . ,m

n = 5 columns (items, attributes) J = 1, . . . , n

p = 0.4 : probability that an entry be equal to 1

Itemset {1, 4} may be closed or not closed, depending on the outcome D.
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II.2 Random Concepts 13 / 51

pj probability that any entry of column j be equal to 1

The entries of the matrix D are independent r.v.s.

O a subset of objects, A a subset of attributes (itemset)

Probability that the rectangle O ×A be a concept ?
The rectangle O ×A is a concept (maximal rectangle of ones) iff

1. O ×A is filled of ones

and
2. each row of the rectangle (I −O)×A contains at least one zero

and
3. each column of the rectangle O × (J −A) contains at least one zero
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II.3 Computation in the Bernoulli model case 14 / 51

Let pA := Πj∈Apj .

1.
One row of O ×A is filled with ones with probability (w.p.): pA
O ×A is filled of ones w.p. p|O|

A

2.
One row of (I −O)×A) contains at least one zero w.p. 1− pA

each row of (I −O)×A) contains at least one zero w.p. (1− pA)m−|O|

3.
Column j of O × (J −A) contains at least one zero w.p.: 1− p

|O|
j

each column of O × (J −A) contains at least one zero w.p.: Πj �∈A(1− p
|O|
j

)

Due to independency we arrive at
Proposition 1

O ×A is a maximal rectangle w.p. p|O|
A

(1− pA)m−|O|Πj �∈A(1− p
|O|
j

)
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One row of O ×A is filled with ones with probability (w.p.): pA
O ×A is filled of ones w.p. p|O|

A

2.
One row of (I −O)×A) contains at least one zero w.p. 1− pA

each row of (I −O)×A) contains at least one zero w.p. (1− pA)m−|O|

3.
Column j of O × (J −A) contains at least one zero w.p.: 1− p

|O|
j

each column of O × (J −A) contains at least one zero w.p.: Πj �∈A(1− p
|O|
j

)

Due to independency we arrive at
Proposition 1

O ×A is a maximal rectangle w.p. p|O|
A

(1− pA)m−|O|Πj �∈A(1− p
|O|
j

)
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II.4 Probability of A be closed, in the Bernoulli model case

15 / 51

• Given A, the preceding proposition shows that the probability only depends on the size
|O| of O

• As Prob(A is k-closed) =
�

O∈P(I)Prob(O ×A is a concept)

and there are
�
m

k

�
subsets O such that |O| = k we arrive at the

Proposition 2

Prob(A is k-closed) =
�

m

k=0

�
m

k

�
pk
A
(1− pA)m−kΠj �∈A(1− pk

j
)

• If pj = p does not depend on j, we have pA = p|A| and
Proposition 3

Prob(A is k-closed) =
�

m

k=0

�
m

k

�
pk|A|(1− p|A|)m−k(1− pk)n−|A|
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II.5 Expectation of |L| in the Bernoulli model case 16 / 51

• Since the number of concepts is equal to the number of k-closed itemsets, we have

|L| =
�

A∈P(J)

1A is k-closed

• Taking expectation we get

E(|L|) =
�

A∈P(J)

prob(A is k-closed)

=
�

A∈P(J)

m�

k=0

�
m

k

�
p
k|A|(1− p

|A|)m−k(1− p
k)n−|A|

and grouping the subsets A with same cardinality we get
Theorem 1

E(|L|) =
n�

l=0

�
n

l

� m�

k=0

�
m

k

�
p
kl(1− p

l)m−k(1− p
k)n−l
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II.6 Variance of |L| in the Bernoulli model case 17 / 51

• Computation of Prob(A and B be closed), A, B ∈ P(J)

Instead of having just 3 cases, namely O×A, I −O×A, O× J −A, it appears 16 cases.
Some formulas in (Emilion-Lévy can be simplified).

• Taking expectation yields E(|L|2) and therefore var(|L|) = E(|L|2)− (E(|L|))2
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