Some probabilistic aspects of FCA I

Richard Emilion (University of Orléans, France)

INVESTMENTS IN EDUCATION DEVELOPMENT

Outline

- Part I Introduction
- Part II Models
- Part III Sampling with Markov Chains
- Part IV Pointwise convergence of empirical CLs
- Part V Experiments, Regression

Part I - Introduction

Motivations, Modelling, Sampling Basics of Probability and Statistics

4 / 51

• Context $\mathcal{C} = (I, J, \mathcal{D})$ (Binary matrix case), \mathcal{L} its concept lattice.

 \bullet Examples of complex and time consuming tasks: listing $\mathcal{L},$ frequent itemsets, associative rules

- Probabilistic and Statistical methods can bring a specific insight to these taks using: 1. *Modeling*
- 2. Sampling, Bootstrapping
- 3. Simulation

- Context $\mathcal{C} = (I, J, \mathcal{D})$ (Binary matrix case), \mathcal{L} its concept lattice.
- \bullet Examples of complex and time consuming tasks: listing $\mathcal{L},$ frequent itemsets, associative rules
- Probabilistic and Statistical methods can bring a specific insight to these taks using: 1. *Modeling*
- 2. Sampling, Bootstrapping
- 3. Simulation

- Context C = (I, J, D) (Binary matrix case), L its concept lattice.
- \bullet Examples of complex and time consuming tasks: listing $\mathcal{L},$ frequent itemsets, associative rules
- Probabilistic and Statistical methods can bring a specific insight to these taks using: 1. *Modeling*
- 2. Sampling, Bootstrapping
- 3. Simulation

- Context $\mathcal{C} = (I, J, \mathcal{D})$ (Binary matrix case), \mathcal{L} its concept lattice.
- \bullet Examples of complex and time consuming tasks: listing $\mathcal{L},$ frequent itemsets, associative rules
- Probabilistic and Statistical methods can bring a specific insight to these taks using: 1. *Modeling*
- 2. Sampling, Bootstrapping
- 3. Simulation

- Context C = (I, J, D) (Binary matrix case), L its concept lattice.
- \bullet Examples of complex and time consuming tasks: listing $\mathcal{L},$ frequent itemsets, associative rules
- Probabilistic and Statistical methods can bring a specific insight to these taks using: 1. *Modeling*
- 2. Sampling, Bootstrapping
- 3. Simulation

- \bullet Model: Mathematical representation that can describe/mimic a real system
- Deterministic models, Probabilistic (Stochastic) models
- Ex. *Modeling* a real context (and \mathcal{L} , if possible) submitted to a random environment: customer purchases, meteorological measurements, patient diseases ...
- Observed measurements are considered outcomes of a probabilistic model.
- Statistics tasks:
- Model Fitting: Estimation of the model parameters from the observations
- Performing Tests and proposing Confidence Intervals
- Model selection
- Some Interest of models:
- Framework for exact computations (concerning, e.g., \mathcal{L}) and for *prediction* Framework for finding the true concepts and not only the empirical concepts

5 / 51

- Model: Mathematical representation that can *describe/mimic* a real system
- Deterministic models, Probabilistic (Stochastic) models
- Ex. *Modeling* a real context (and \mathcal{L} , if possible) submitted to a random environment: customer purchases, meteorological measurements, patient diseases ...
- Observed measurements are considered outcomes of a probabilistic model.
- Statistics tasks:
- Model Fitting: Estimation of the model parameters from the observations
- Performing Tests and proposing Confidence Intervals
- Model selection
- Some Interest of models:

Framework for exact computations (concerning, e.g., \mathcal{L}) and for *prediction* Framework for finding the true concepts and not only the empirical concepts

5 / 51

- Model: Mathematical representation that can *describe/mimic* a real system
- Deterministic models, Probabilistic (Stochastic) models
- Ex. *Modeling* a real context (and \mathcal{L} , if possible) submitted to a random environment: customer purchases, meteorological measurements, patient diseases ...
- Observed measurements are considered outcomes of a probabilistic model.
- Statistics tasks:
- Model Fitting: Estimation of the model parameters from the observations
- Performing Tests and proposing Confidence Intervals
- Model selection
- Some Interest of models:

Framework for exact computations (concerning, e.g., \mathcal{L}) and for *prediction* Framework for finding the true concepts and not only the empirical concepts

- Model: Mathematical representation that can *describe/mimic* a real system
- Deterministic models, Probabilistic (Stochastic) models
- Ex. *Modeling* a real context (and \mathcal{L} , if possible) submitted to a random environment: customer purchases, meteorological measurements, patient diseases ...
- Observed measurements are considered outcomes of a probabilistic model.
- Statistics tasks:
- Model Fitting: Estimation of the model parameters from the observations
- Performing Tests and proposing Confidence Intervals
- Model selection
- Some Interest of models:
- Framework for exact computations (concerning, e.g., \mathcal{L}) and for *prediction* Framework for finding the true concepts and not only the empirical concepts

5 / 51

- Model: Mathematical representation that can *describe/mimic* a real system
- Deterministic models, Probabilistic (Stochastic) models
- Ex. *Modeling* a real context (and \mathcal{L} , if possible) submitted to a random environment: customer purchases, meteorological measurements, patient diseases ...
- Observed measurements are considered outcomes of a probabilistic model.
- Statistics tasks:
- Model Fitting: Estimation of the model parameters from the observations
- Performing Tests and proposing Confidence Intervals
- Model selection
- Some Interest of models:

Framework for exact computations (concerning, e.g., \mathcal{L}) and for *prediction* Framework for finding the true concepts and not only the empirical concepts

- Model: Mathematical representation that can *describe/mimic* a real system
- Deterministic models, Probabilistic (Stochastic) models
- Ex. *Modeling* a real context (and \mathcal{L} , if possible) submitted to a random environment: customer purchases, meteorological measurements, patient diseases ...
- Observed measurements are considered outcomes of a probabilistic model.
- Statistics tasks:
- Model Fitting: Estimation of the model parameters from the observations
- Performing Tests and proposing Confidence Intervals
- Model selection
- Some Interest of models:
- Framework for exact computations (concerning, e.g., \mathcal{L}) and for *prediction* Framework for finding the true concepts and not only the empirical concept

5 / 51

- Model: Mathematical representation that can *describe/mimic* a real system
- Deterministic models, Probabilistic (Stochastic) models
- Ex. *Modeling* a real context (and \mathcal{L} , if possible) submitted to a random environment: customer purchases, meteorological measurements, patient diseases ...
- Observed measurements are considered outcomes of a probabilistic model.
- Statistics tasks:
- Model Fitting: Estimation of the model parameters from the observations
- Performing Tests and proposing Confidence Intervals
- Model selection
- Some Interest of models:

Framework for exact computations (concerning, e.g., \mathcal{L}) and for *prediction* Framework for finding the true concepts and not only the empirical concepts

I.3 Sampling

6 / 51

Consider a given C or L as a population: Sample, Bootstrap individuals from C or from L
Application : Concept Counting (estimating |L|), and quickly check the feasibility of a potentially exponential time listing of all concepts

I.3 Sampling

- $\bullet \ \ Consider \ a \ given \ \mathcal{C} \ or \ \mathcal{L} \ as \ a \ population: \ Sample, \ Bootstrap \ individuals \ from \ \mathcal{C} \ or \ from \ \mathcal{L}$
- Application : Concept Counting (estimating $|\mathcal{L}|$), and quickly check the feasibility of a potentially exponential time listing of all concepts

7 / 51

• Let Ω a nonvoid set and $\mathcal{P}(\Omega)$ its power set

• Let $\mathcal F$ be a σ -algebra on Ω , i.e:

 $\mathcal{F} \subseteq \mathcal{P}(\Omega), \emptyset \in \mathcal{F}$, stable by complementation (^c), and countable union (\cup_n) Measurable space: (Ω, \mathcal{F})

 \bullet Elements of ${\mathcal F}$ are called measurable sets

Examples :

- Ω countable (finite set, $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$) and $\mathcal{F} = \mathcal{P}(\Omega)$
- intersection of a family of σ -algebra

- Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$, the intersection of all the σ -algebras containing \mathcal{A} is the smallest σ -algebra containing \mathcal{A} , it is called the σ -algebra generated by \mathcal{A} and is denoted by $\sigma(\mathcal{A})$ - $\Omega = \mathcal{R}$, $\mathcal{F} = \sigma(\mathcal{I}), \mathcal{I}$ denoting the set of all intervals - $\Omega = \Omega_1 \times \Omega_2, \ \mathcal{F} = \sigma(\{F_1 \times F_2, F_1 \in \mathcal{F}_1, F_2 \in \mathcal{F}_2\}$ is denoted $\mathcal{F}_1 \otimes \mathcal{F}_2$ - $\Omega = \mathbb{R}^2, \mathbb{R}^d, \mathcal{M}_{m \times n}(\mathbb{R})$

- Let Ω a nonvoid set and $\mathcal{P}(\Omega)$ its power set
- Let ${\mathcal F}$ be a $\sigma\text{-algebra}$ on $\Omega,$ i.e.

 $\mathcal{F} \subseteq \mathcal{P}(\Omega), \emptyset \in \mathcal{F}$, stable by complementation (^c), and countable union (\cup_n) Measurable space: (Ω, \mathcal{F})

 \bullet Elements of ${\mathcal F}$ are called measurable sets

Examples :

- Ω countable (finite set, $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$) and $\mathcal{F} = \mathcal{P}(\Omega)$
- intersection of a family of σ -algebra

- Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$, the intersection of all the σ -algebras containing \mathcal{A} is the smallest σ -algebra containing \mathcal{A} , it is called the σ -algebra generated by \mathcal{A} and is denoted by $\sigma(\mathcal{A})$ - $\Omega = \mathcal{R}$, $\mathcal{F} = \sigma(\mathcal{I}), \mathcal{I}$ denoting the set of all intervals - $\Omega = \Omega_1 \times \Omega_2, \ \mathcal{F} = \sigma(\{F_1 \times F_2, F_1 \in \mathcal{F}_1, F_2 \in \mathcal{F}_2\}$ is denoted $\mathcal{F}_1 \otimes \mathcal{F}_2$ - $\Omega = \mathbb{R}^2, \mathbb{R}^d, \mathcal{M}_{m \times n}(\mathbb{R})$

- Let Ω a nonvoid set and $\mathcal{P}(\Omega)$ its power set
- Let ${\mathcal F}$ be a $\sigma\text{-algebra}$ on $\Omega,$ i.e:

 $\mathcal{F} \subseteq \mathcal{P}(\Omega), \emptyset \in \mathcal{F}$, stable by complementation (^c), and countable union (\cup_n) Measurable space: (Ω, \mathcal{F})

 \bullet Elements of ${\mathcal F}$ are called measurable sets

Examples :

- Ω countable (finite set, $\mathbb{N},\mathbb{Z},\mathbb{Q})$ and $\mathcal{F}=\mathcal{P}(\Omega)$
- intersection of a family of σ -algebra

- Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$, the intersection of all the σ -algebras containing \mathcal{A} is the smallest σ -algebra containing \mathcal{A} , it is called the σ -algebra generated by \mathcal{A} and is denoted by $\sigma(\mathcal{A})$ - $\Omega = \mathcal{R}$, $\mathcal{F} = \sigma(\mathcal{I}), \mathcal{I}$ denoting the set of all intervals - $\Omega = \Omega_1 \times \Omega_2, \ \mathcal{F} = \sigma(\{F_1 \times F_2, F_1 \in \mathcal{F}_1, F_2 \in \mathcal{F}_2\}$ is denoted $\mathcal{F}_1 \otimes \mathcal{F}_2$ - $\Omega = \mathbb{R}^2, \mathbb{R}^d, \ \mathcal{M}_{m \times T}(\mathbb{R})$

- Let Ω a nonvoid set and $\mathcal{P}(\Omega)$ its power set
- Let $\mathcal F$ be a σ -algebra on Ω , i.e.

 $\mathcal{F} \subseteq \mathcal{P}(\Omega), \emptyset \in \mathcal{F}$, stable by complementation (^c), and countable union (\cup_n) Measurable space: (Ω, \mathcal{F})

 \bullet Elements of ${\mathcal F}$ are called measurable sets

Examples :

- Ω countable (finite set, $\mathbb{N},\mathbb{Z},\mathbb{Q})$ and $\mathcal{F}=\mathcal{P}(\Omega)$
- intersection of a family of $\sigma\text{-algebra}$

- Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$, the intersection of all the σ -algebras containing \mathcal{A} is the smallest σ -algebra containing \mathcal{A} , it is called the σ -algebra generated by \mathcal{A} and is denoted by $\sigma(\mathcal{A})$ - $\Omega = \mathcal{R}$, $\mathcal{F} = \sigma(\mathcal{I}), \mathcal{I}$ denoting the set of all intervals - $\Omega = \Omega_1 \times \Omega_2, \ \mathcal{F} = \sigma(\{F_1 \times F_2, F_1 \in \mathcal{F}_1, F_2 \in \mathcal{F}_2\})$ is denoted $\mathcal{F}_1 \otimes \mathcal{F}_2$ - $\Omega = \mathbb{R}^2, \mathbb{R}^d, \mathcal{M}_{m \times n}(\mathbb{R})$

- Let Ω a nonvoid set and $\mathcal{P}(\Omega)$ its power set
- Let $\mathcal F$ be a σ -algebra on Ω , i.e.

 $\mathcal{F} \subseteq \mathcal{P}(\Omega), \emptyset \in \mathcal{F}$, stable by complementation (^c), and countable union (\cup_n) Measurable space: (Ω, \mathcal{F})

 \bullet Elements of ${\mathcal F}$ are called measurable sets

Examples :

- Ω countable (finite set, $\mathbb{N},\mathbb{Z},\mathbb{Q})$ and $\mathcal{F}=\mathcal{P}(\Omega)$
- intersection of a family of $\sigma\text{-algebra}$

- Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$, the intersection of all the σ -algebras containing \mathcal{A} is the smallest σ -algebra containing \mathcal{A} , it is called the σ -algebra generated by \mathcal{A} and is denoted by $\sigma(\mathcal{A})$ - $\Omega = \mathcal{R}$, $\mathcal{F} = \sigma(\mathcal{I}), \mathcal{I}$ denoting the set of all intervals - $\Omega = \Omega_1 \times \Omega_2, \mathcal{F} = \sigma(\{F_1 \times F_2, F_1 \in \mathcal{F}_1, F_2 \in \mathcal{F}_2\}$ is denoted $\mathcal{F}_1 \otimes \mathcal{F}_2$ - $\Omega = \mathbb{R}^2, \mathbb{R}^d, \mathcal{M}_{m \times n}(\mathbb{R})$

- Let Ω a nonvoid set and $\mathcal{P}(\Omega)$ its power set
- Let ${\mathcal F}$ be a $\sigma\text{-algebra}$ on $\Omega,$ i.e:

 $\mathcal{F} \subseteq \mathcal{P}(\Omega), \emptyset \in \mathcal{F}$, stable by complementation (^c), and countable union (\cup_n) Measurable space: (Ω, \mathcal{F})

 \bullet Elements of ${\mathcal F}$ are called measurable sets

Examples :

- Ω countable (finite set, $\mathbb{N},\mathbb{Z},\mathbb{Q})$ and $\mathcal{F}=\mathcal{P}(\Omega)$
- intersection of a family of $\sigma\text{-algebra}$

- Let $\mathcal{A}\subseteq \mathcal{P}(\Omega)$, the intersection of all the σ -algebras containing \mathcal{A} is the smallest σ -algebra containing \mathcal{A} , it is called the σ -algebra generated by \mathcal{A} and is denoted by $\sigma(\mathcal{A})$ - $\Omega=\mathcal{R}$, $\mathcal{F}=\sigma(\mathcal{I}),\mathcal{I}$ denoting the set of all intervals

- $\Omega = \Omega_1 \times \Omega_2$, $\mathcal{F} = \sigma(\{F_1 \times F_2, F_1 \in \mathcal{F}_1, F_2 \in \mathcal{F}_2\}$ is denoted $\mathcal{F}_1 \otimes \mathcal{F}_2$ - $\Omega = \mathbb{R}^2, \mathbb{R}^d, \mathcal{M}_{m \times n}(\mathbb{R})$

- Let Ω a nonvoid set and $\mathcal{P}(\Omega)$ its power set
- Let ${\mathcal F}$ be a $\sigma\text{-algebra}$ on $\Omega,$ i.e.

 $\mathcal{F} \subseteq \mathcal{P}(\Omega), \emptyset \in \mathcal{F}$, stable by complementation (^c), and countable union (\cup_n) Measurable space: (Ω, \mathcal{F})

 \bullet Elements of ${\mathcal F}$ are called measurable sets

Examples :

- Ω countable (finite set, $\mathbb{N},\mathbb{Z},\mathbb{Q})$ and $\mathcal{F}=\mathcal{P}(\Omega)$
- intersection of a family of $\sigma\text{-algebra}$

- Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$, the intersection of all the σ -algebras containing \mathcal{A} is the smallest

 σ -algebra containing \mathcal{A} , it is called the σ -algebra generated by \mathcal{A} and is denoted by $\sigma(\mathcal{A})$ - $\Omega = \mathcal{R}$, $\mathcal{F} = \sigma(\mathcal{I}), \mathcal{I}$ denoting the set of all intervals

- $\Omega = \Omega_1 \times \Omega_2$, $\mathcal{F} = \sigma(\{F_1 \times F_2, F_1 \in \mathcal{F}_1, F_2 \in \mathcal{F}_2\}$ is denoted $\mathcal{F}_1 \otimes \mathcal{F}_2$ - $\Omega = \mathbb{R}^2, \mathbb{R}^d, \mathcal{M}_{m \times n}(\mathbb{R})$

- Let Ω a nonvoid set and $\mathcal{P}(\Omega)$ its power set
- Let $\mathcal F$ be a σ -algebra on Ω , i.e.

 $\mathcal{F} \subseteq \mathcal{P}(\Omega), \emptyset \in \mathcal{F}$, stable by complementation (^c), and countable union (\cup_n) Measurable space: (Ω, \mathcal{F})

 \bullet Elements of ${\mathcal F}$ are called measurable sets

Examples :

- Ω countable (finite set, $\mathbb{N},\mathbb{Z},\mathbb{Q})$ and $\mathcal{F}=\mathcal{P}(\Omega)$
- intersection of a family of $\sigma\text{-algebra}$

- Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$, the intersection of all the σ -algebras containing \mathcal{A} is the smallest σ -algebra containing \mathcal{A} , it is called the σ -algebra generated by \mathcal{A} and is denoted by $\sigma(\mathcal{A})$ - $\Omega = \mathcal{R}$, $\mathcal{F} = \sigma(\mathcal{I}), \mathcal{I}$ denoting the set of all intervals - $\Omega = \Omega_1 \times \Omega_2, \ \mathcal{F} = \sigma(\{F_1 \times F_2, F_1 \in \mathcal{F}_1, F_2 \in \mathcal{F}_2\}$ is denoted $\mathcal{F}_1 \otimes \mathcal{F}_2$ - $\Omega = \mathbb{R}^2, \mathbb{R}^d, \mathcal{M}_{m \times n}(\mathbb{R})$

- Let Ω a nonvoid set and $\mathcal{P}(\Omega)$ its power set
- Let $\mathcal F$ be a σ -algebra on Ω , i.e.

 $\mathcal{F} \subseteq \mathcal{P}(\Omega), \emptyset \in \mathcal{F}$, stable by complementation (^c), and countable union (\cup_n) Measurable space: (Ω, \mathcal{F})

 \bullet Elements of ${\mathcal F}$ are called measurable sets

Examples :

- Ω countable (finite set, $\mathbb{N},\mathbb{Z},\mathbb{Q})$ and $\mathcal{F}=\mathcal{P}(\Omega)$
- intersection of a family of $\sigma\text{-algebra}$

- Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$, the intersection of all the σ -algebras containing \mathcal{A} is the smallest σ -algebra containing \mathcal{A} , it is called the σ -algebra generated by \mathcal{A} and is denoted by $\sigma(\mathcal{A})$ - $\Omega = \mathcal{R}$, $\mathcal{F} = \sigma(\mathcal{I}), \mathcal{I}$ denoting the set of all intervals - $\Omega = \Omega_1 \times \Omega_2, \ \mathcal{F} = \sigma(\{F_1 \times F_2, F_1 \in \mathcal{F}_1, F_2 \in \mathcal{F}_2\}$ is denoted $\mathcal{F}_1 \otimes \mathcal{F}_2$ - $\Omega = \mathbb{R}^2, \mathbb{R}^d, \mathcal{M}_{m \times n}(\mathbb{R})$

• A probability measure \mathbb{P} on (Ω, \mathcal{F}) is a mapping $\mathbb{P} : \mathcal{F} \longrightarrow [0, 1]$ such that $\mathbb{P}(\Omega) = 1, \mathbb{P}(\cup A_n) = \sum_n \mathbb{P}(A_n)$ for pairwise disjoint A_n Probability space: $(\Omega, \mathcal{F}, \mathbb{P})$

• Examples Ω finite $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$. $\Omega = \{\omega_1, \dots, \omega_n, \dots\}, \mathbb{P}(\omega_n) = p_n \ge 0, \sum_n p_n = 1$. $\Omega = [0, 1], \mathbb{P}([a, b]) = b - a, 0 \le a \le b \le 1$

• A nullset N is a $N \in \mathcal{F} : \mathbb{P}(N) = 0$

• Let prop be a property which an element $\omega \in \Omega$ may or may not have. We will say that prop holds almost everyhere (a.e.) if $\{\omega \in \Omega : prop(\omega) \text{ is false}\}$ is a nullset

• A family of events $A_i \in \mathcal{F}, i \in I$ is independent if for any finite subset $J \subseteq I$ we have $\mathbb{P}(\bigcap_{j \in J} A_j) = \prod_{i \in J} \mathbb{P}(A_j)$

• A family $\mathcal{F}_i, i \in I$ of sub σ -algebras of \mathcal{F} is independent if any family $A_i, i \in I$, with $A_i \in \mathcal{F}_i$, is independent

• A probability measure \mathbb{P} on (Ω, \mathcal{F}) is a mapping $\mathbb{P} : \mathcal{F} \longrightarrow [0, 1]$ such that $\mathbb{P}(\Omega) = 1, \mathbb{P}(\cup A_n) = \sum_n \mathbb{P}(A_n)$ for pairwise disjoint A_n Probability space: $(\Omega, \mathcal{F}, \mathbb{P})$

• Examples Ω finite $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$. $\Omega = \{\omega_1, \dots, \omega_n, \dots\}, \mathbb{P}(\omega_n) = p_n \ge 0, \sum_n p_n = 1$. $\Omega = [0, 1], \mathbb{P}([a, b]) = b - a, 0 \le a \le b \le 1$

• A nullset N is a $N \in \mathcal{F} : \mathbb{P}(N) = 0$

Let prop be a property which an element ω ∈ Ω may or may not have. We will say that prop holds almost everyhere (a.e.) if {ω ∈ Ω : prop(ω) is false} is a nullset
A family of events A_i ∈ F, i ∈ I is independent if for any finite subset J ⊆ I we have P(∩_{j∈J}A_j) = ∏_{j∈J} P(A_j)
A family F_i, i ∈ I of sub σ-algebras of F is independent if any family A_i, i ∈ I, with

 $A_i \in \mathcal{F}_i$, is independent

• A probability measure \mathbb{P} on (Ω, \mathcal{F}) is a mapping $\mathbb{P} : \mathcal{F} \longrightarrow [0, 1]$ such that $\mathbb{P}(\Omega) = 1, \mathbb{P}(\cup A_n) = \sum_n \mathbb{P}(A_n)$ for pairwise disjoint A_n Probability space: $(\Omega, \mathcal{F}, \mathbb{P})$

• Examples Ω finite $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$. $\Omega = \{\omega_1, \dots, \omega_n, \dots\}, \mathbb{P}(\omega_n) = p_n \ge 0, \sum_n p_n = 1$. $\Omega = [0, 1], \mathbb{P}([a, b]) = b - a, 0 \le a \le b \le 1$

• A nullset N is a $N \in \mathcal{F} : \mathbb{P}(N) = 0$

• Let *prop* be a property which an element $\omega \in \Omega$ may or may not have. We will say that *prop* holds almost everyhere (a.e.) if $\{\omega \in \Omega : prop(\omega) \text{ is false}\}$ is a *nullset*

A family of events A_i ∈ F, i ∈ I is independent if for any finite subset J ⊆ I we have P(∩_{j∈J}A_j) = ∏_{j∈J} P(A_j)
A family F_i, i ∈ I of sub σ-algebras of F is independent if any family A_i, i ∈ I, with

 $A_i \in \mathcal{F}_i$, is independent

• A probability measure \mathbb{P} on (Ω, \mathcal{F}) is a mapping $\mathbb{P} : \mathcal{F} \longrightarrow [0, 1]$ such that $\mathbb{P}(\Omega) = 1, \mathbb{P}(\cup A_n) = \sum_n \mathbb{P}(A_n)$ for pairwise disjoint A_n Probability space: $(\Omega, \mathcal{F}, \mathbb{P})$

• Examples Ω finite $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$. $\Omega = \{\omega_1, \dots, \omega_n, \dots\}, \mathbb{P}(\omega_n) = p_n \ge 0, \sum_n p_n = 1$. $\Omega = [0, 1], \mathbb{P}([a, b]) = b - a, 0 \le a \le b \le 1$

• A nullset N is a
$$N \in \mathcal{F} : \mathbb{P}(N) = 0$$

• Let *prop* be a property which an element $\omega \in \Omega$ may or may not have. We will say that *prop* holds almost everyhere (a.e.) if $\{\omega \in \Omega : prop(\omega) \text{ is false}\}$ is a *nullset*

• A family of events $A_i \in \mathcal{F}, i \in I$ is independent if for any finite subset $J \subseteq I$ we have $\mathbb{P}(\cap_{j \in J} A_j) = \prod_{i \in J} \mathbb{P}(A_j)$

• A family $\mathcal{F}_i, i \in I$ of sub σ -algebras of \mathcal{F} is independent if any family $A_i, i \in I$, with $A_i \in \mathcal{F}_i$, is independent

• A probability measure \mathbb{P} on (Ω, \mathcal{F}) is a mapping $\mathbb{P} : \mathcal{F} \longrightarrow [0, 1]$ such that $\mathbb{P}(\Omega) = 1, \mathbb{P}(\cup A_n) = \sum_n \mathbb{P}(A_n)$ for pairwise disjoint A_n Probability space: $(\Omega, \mathcal{F}, \mathbb{P})$

- Examples Ω finite $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$. $\Omega = \{\omega_1, \dots, \omega_n, \dots\}, \mathbb{P}(\omega_n) = p_n \ge 0, \sum_n p_n = 1$. $\Omega = [0, 1], \mathbb{P}([a, b]) = b - a, 0 \le a \le b \le 1$
- A nullset N is a $N \in \mathcal{F} : \mathbb{P}(N) = 0$
- Let *prop* be a property which an element $\omega \in \Omega$ may or may not have. We will say that *prop* holds almost everyhere (a.e.) if $\{\omega \in \Omega : prop(\omega) \text{ is false}\}$ is a *nullset*
- A family of events $A_i \in \mathcal{F}, i \in I$ is independent if for any finite subset $J \subseteq I$ we have $\mathbb{P}(\bigcap_{j \in J} A_j) = \prod_{j \in J} \mathbb{P}(A_j)$
- A family $\mathcal{F}_i, i \in I$ of sub σ -algebras of \mathcal{F} is independent if any family $A_i, i \in I$, with $A_i \in \mathcal{F}_i$, is independent

9 / 51

• Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and (V, \mathcal{V}) a measurable space. A V-valued random variable is a mapping $X : \Omega \longrightarrow V$ which is measurable, i.e. $X^{-1}(\mathcal{V}) \subseteq \mathcal{F}$

• Recall that if $B \in \mathcal{V}, X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} = \{X \in B\}$ $X^{-1}(\mathcal{V}) = \{X^{-1}(B), B \in \mathcal{V}\}$ is the smallest σ -algebra which makes X measurable $X^{-1}(\mathcal{V})$ is denoted $\sigma(X)$: σ -algebra generated by X

• $\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B))$ defines a probability measure on \mathcal{V} called the (probability) distribution of X: shortly $X \sim \mathbb{P}_X$ Examples $V = \mathbb{N}, \mathbb{P}_X(\{n\}) = \mathbb{P}(X = n) = e^{-\theta} \frac{\theta^n}{n!}$. $X \sim Poisson(\theta), \theta > 0$ $V = \mathbb{R}, \mathbb{P}_X(B) = \mathbb{P}(X \in B) = \int_B f(x) dx$ with $f \ge 0, \int_{\mathbb{R}} f(x) dx = 1$.

• $X_i, i \in I$ are said independent (i) iff the σ -algebras $\sigma(X_i)$ are independent • $X_i, i \in I$ are said identically distributed (i.d.) iff $\mathbb{P}_{X_i} = \mathbb{P}_{X_{i'}}$ for all $i, i' \in I$

9 / 51

• Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and (V, \mathcal{V}) a measurable space. A V-valued random variable is a mapping $X : \Omega \longrightarrow V$ which is measurable, i.e. $X^{-1}(\mathcal{V}) \subseteq \mathcal{F}$

• Recall that if $B \in \mathcal{V}, X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} = \{X \in B\}$ $X^{-1}(\mathcal{V}) = \{X^{-1}(B), B \in \mathcal{V}\}$ is the smallest σ -algebra which makes X measurable $X^{-1}(\mathcal{V})$ is denoted $\sigma(X)$: σ -algebra generated by X

• $\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B))$ defines a probability measure on \mathcal{V} called the (probability) distribution of X: shortly $X \sim \mathbb{P}_X$ Examples $V = \mathbb{N}, \mathbb{P}_X(\{n\}) = \mathbb{P}(X = n) = e^{-\theta} \frac{\theta^n}{n!}$. $X \sim Poisson(\theta), \theta > 0$ $V = \mathbb{R}, \mathbb{P}_X(B) = \mathbb{P}(X \in B) = \int_B f(x) dx$ with $f \ge 0, \int_{\mathbb{R}} f(x) dx = 1$.

• $X_i, i \in I$ are said independent (i) iff the σ -algebras $\sigma(X_i)$ are independent • $X_i, i \in I$ are said identically distributed (i.d.) iff $\mathbb{P}_{X_i} = \mathbb{P}_{X_{i'}}$ for all $i, i' \in I$

9 / 51

• Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and (V, \mathcal{V}) a measurable space. A V-valued random variable is a mapping $X : \Omega \longrightarrow V$ which is measurable, i.e. $X^{-1}(\mathcal{V}) \subseteq \mathcal{F}$

• Recall that if $B \in \mathcal{V}, X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} = \{X \in B\}$ $X^{-1}(\mathcal{V}) = \{X^{-1}(B), B \in \mathcal{V}\}$ is the smallest σ -algebra which makes X measurable $X^{-1}(\mathcal{V})$ is denoted $\sigma(X)$: σ -algebra generated by X

• $\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B))$ defines a probability measure on \mathcal{V} called the (probability) distribution of X: shortly $X \sim \mathbb{P}_X$ Examples $V = \mathbb{N}, \mathbb{P}_X(\{n\}) = \mathbb{P}(X = n) = e^{-\theta} \frac{\theta^n}{n!}$. $X \sim Poisson(\theta), \theta > 0$ $V = \mathbb{R}, \mathbb{P}_X(B) = \mathbb{P}(X \in B) = \int_B f(x) dx$ with $f \ge 0, \int_{\mathbb{R}} f(x) dx = 1$.

• $X_i, i \in I$ are said independent (i) iff the σ -algebras $\sigma(X_i)$ are independent • $X_i, i \in I$ are said identically distributed (i.d.) iff $\mathbb{P}_{X_i} = \mathbb{P}_{X_i}$ for all $i, i' \in I$

9 / 51

• Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and (V, \mathcal{V}) a measurable space. A V-valued random variable is a mapping $X : \Omega \longrightarrow V$ which is measurable, i.e. $X^{-1}(\mathcal{V}) \subseteq \mathcal{F}$

• Recall that if $B \in \mathcal{V}, X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} = \{X \in B\}$ $X^{-1}(\mathcal{V}) = \{X^{-1}(B), B \in \mathcal{V}\}$ is the smallest σ -algebra which makes X measurable $X^{-1}(\mathcal{V})$ is denoted $\sigma(X)$: σ -algebra generated by X

• $\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B))$ defines a probability measure on \mathcal{V} called the (probability) distribution of X: shortly $X \sim \mathbb{P}_X$ Examples $V = \mathbb{N}, \mathbb{P}_X(\{n\}) = \mathbb{P}(X = n) = e^{-\theta} \frac{\theta^n}{n!}$. $X \sim Poisson(\theta), \theta > 0$ $V = \mathbb{R}, \mathbb{P}_X(B) = \mathbb{P}(X \in B) = \int_B f(x) dx$ with $f \ge 0, \int_{\mathbb{R}} f(x) dx = 1$.

• $X_i, i \in I$ are said independent (i) iff the σ -algebras $\sigma(X_i)$ are independent

• $X_i, i \in I$ are said identically distributed (i.d.) iff $\mathbb{P}_{X_i} = \mathbb{P}_{X_{i'}}$ for all $i, i' \in I$

10 / 51

Outcome of X : X(ω) for some ω ∈ Ω. Can be any object : number, function, fuzzy set,
A sample of X : r.v.s X₁,...X_n : X_i^{i.i.d.} ℙ_X
Observed sample : outcome x₁,...x_n of a sample, i.e. x_i = X_i(ω)

• A statistic is a measurable function $T(X_1, \ldots X_n)$ of a sample: it is a r.v. Examples $\bar{X} = \frac{X_1 + \ldots + X_n}{n}, S^2 = \frac{(X_1 - \bar{X})^2 + \ldots + (X_n - \bar{X})^2}{n}, S = \sqrt{S^2}.$ Observed statistic $T(x_1, \ldots x_n)$: it is a number. Examples $\bar{x} = \frac{x_1 + \ldots + x_n}{n}, s^2 = \frac{(x_1 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n}, s = \sqrt{s^2}.$ • LNL: For almost all (a.a.) $\omega, \bar{X}(\omega) \longrightarrow \mathbb{E}(X)$ as $n \to \infty$

• Simulation: algorithm whose outputs mimic outcomes of a sample. Ex. (R) $x = runif(100) \rightarrow x_1, \ldots, x_{100}$ with $X_i \stackrel{i.d.}{\sim} \lambda_{[0,1]}$, mean $(x) \simeq 0.5$ for a.a. simulations p = c(0.3, 0.5, 0.2), x = sample(1:3, 100, prob = p): sample from a discrete r.v. $y = rnorm(100) \rightarrow y_1, \ldots, y_{100}$ with $Y_i \stackrel{i.d.}{\sim} \mathcal{N}(0, 1)$, mean $(y) \simeq 0$ for a.a. simulations

- *Outcome* of $X : X(\omega)$ for some $\omega \in \Omega$. Can be any object : number, function, fuzzy set,
- A sample of X : r.v.s $X_1, \ldots X_n : X_i \stackrel{i.i.d.}{\sim} \mathbb{P}_X$ Observed sample : outcome $x_1, \ldots x_n$ of a sample, i.e. $x_i = X_i(\omega)$

• A statistic is a measurable function $T(X_1, \ldots, X_n)$ of a sample: it is a r.v. Examples $\overline{X} = \frac{X_1 + \ldots + X_n}{n}$, $S^2 = \frac{(X_1 - \overline{X})^2 + \ldots + (X_n - \overline{X})^2}{n}$, $S = \sqrt{S^2}$. Observed statistic $T(x_1, \ldots, x_n)$: it is a number. Examples $\overline{x} = \frac{x_1 + \ldots + x_n}{n}$, $s^2 = \frac{(x_1 - \overline{x})^2 + \ldots + (x_n - \overline{x})^2}{n}$, $s = \sqrt{s^2}$. • LNL: For almost all (a.a.) ω , $\overline{X}(\omega) \longrightarrow \mathbb{E}(X)$ as $n \to \infty$

• Simulation: algorithm whose outputs mimic outcomes of a sample. Ex. (R) $x = runif(100) \rightarrow x_1, \ldots, x_{100}$ with $X_i \stackrel{i.i.d.}{\sim} \lambda_{[0,1]}$, mean $(x) \simeq 0.5$ for a.a. simulations p = c(0.3, 0.5, 0.2), x = sample(1:3, 100, prob = p): sample from a discrete r.v. $y = rnorm(100) \rightarrow y_1, \ldots, y_{100}$ with $Y_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$, mean $(y) \simeq 0$ for a.a. simulations

- *Outcome* of $X : X(\omega)$ for some $\omega \in \Omega$. Can be any object : number, function, fuzzy set,
- A sample of X: r.v.s $X_1, \ldots, X_n : X_i \stackrel{i.i.d.}{\sim} \mathbb{P}_X$ Observed sample : outcome x_1, \ldots, x_n of a sample, i.e. $x_i = X_i(\omega)$

• A statistic is a measurable function $T(X_1, \ldots, X_n)$ of a sample: it is a r.v. Examples $\bar{X} = \frac{X_1 + \ldots + X_n}{n}$, $S^2 = \frac{(X_1 - \bar{X})^2 + \ldots + (X_n - \bar{X})^2}{n}$, $S = \sqrt{S^2}$. Observed statistic $T(x_1, \ldots, x_n)$: it is a number. Examples $\bar{x} = \frac{x_1 + \ldots + x_n}{n}$, $s^2 = \frac{(x_1 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n}$, $s = \sqrt{s^2}$. • LNL: For almost all (a.a.) ω , $\bar{X}(\omega) \xrightarrow{} \mathbb{E}(X)$ as $n \to \infty$

• Simulation: algorithm whose outputs mimic outcomes of a sample. Ex. (R) $x = runif(100) \rightarrow x_1, \ldots, x_{100}$ with $X_i \stackrel{i.i.d.}{\sim} \lambda_{[0,1]}$, mean $(x) \simeq 0.5$ for a.a. simulations p = c(0.3, 0.5, 0.2), x = sample(1:3, 100, prob = p): sample from a discrete r.v. $y = rnorm(100) \rightarrow y_1, \ldots, y_{100}$ with $Y_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$, mean $(y) \simeq 0$ for a.a. simulations

- *Outcome* of $X : X(\omega)$ for some $\omega \in \Omega$. Can be any object : number, function, fuzzy set,
- A sample of X: r.v.s $X_1, \ldots, X_n : X_i \stackrel{i.i.d.}{\sim} \mathbb{P}_X$ Observed sample : outcome x_1, \ldots, x_n of a sample, i.e. $x_i = X_i(\omega)$

• A statistic is a measurable function $T(X_1, \ldots X_n)$ of a sample: it is a r.v. Examples $\bar{X} = \frac{X_1 + \ldots + X_n}{n}$, $S^2 = \frac{(X_1 - \bar{X})^2 + \ldots + (X_n - \bar{X})^2}{n}$, $S = \sqrt{S^2}$. Observed statistic $T(x_1, \ldots x_n)$: it is a number. Examples $\bar{x} = \frac{x_1 + \ldots + x_n}{n}$, $s^2 = \frac{(x_1 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n}$, $s = \sqrt{s^2}$. • LNL: For almost all (a.a.) ω , $\bar{X}(\omega) \longrightarrow \mathbb{E}(X)$ as $n \to \infty$

• Simulation: algorithm whose outputs mimic outcomes of a sample. Ex. (R) $x = runif(100) \rightarrow x_1, \ldots, x_{100}$ with $X_i \stackrel{i.i.d.}{\sim} \lambda_{[0,1]}$, mean $(x) \simeq 0.5$ for a.a. simulations p = c(0.3, 0.5, 0.2), x = sample(1:3, 100, prob = p): sample from a discrete r.v. $y = rnorm(100) \rightarrow y_1, \ldots, y_{100}$ with $Y_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$, mean $(y) \simeq 0$ for a.a. simulations

- *Outcome* of $X : X(\omega)$ for some $\omega \in \Omega$. Can be any object : number, function, fuzzy set,
- A sample of X: r.v.s $X_1, \ldots, X_n : X_i \stackrel{i.i.d.}{\sim} \mathbb{P}_X$ Observed sample : outcome x_1, \ldots, x_n of a sample, i.e. $x_i = X_i(\omega)$

• A statistic is a measurable function $T(X_1, \ldots X_n)$ of a sample: it is a r.v. Examples $\bar{X} = \frac{X_1 + \ldots + X_n}{n}$, $S^2 = \frac{(X_1 - \bar{X})^2 + \ldots + (X_n - \bar{X})^2}{n}$, $S = \sqrt{S^2}$. Observed statistic $T(x_1, \ldots x_n)$: it is a number. Examples $\bar{x} = \frac{x_1 + \ldots + x_n}{n}$, $s^2 = \frac{(x_1 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n}$, $s = \sqrt{s^2}$. • LNL: For almost all (a.a.) ω , $\bar{X}(\omega) \longrightarrow \mathbb{E}(X)$ as $n \to \infty$

• Simulation: algorithm whose outputs mimic outcomes of a sample. Ex. (R) $x = runif(100) \rightarrow x_1, \ldots, x_{100}$ with $X_i \stackrel{i.i.d.}{\sim} \lambda_{[0,1]}$, mean $(x) \simeq 0.5$ for a.a. simulations p = c(0.3, 0.5, 0.2), x = sample(1:3, 100, prob = p): sample from a discrete r.v. $y = rnorm(100) \rightarrow y_1, \ldots, y_{100}$ with $Y_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$, mean $(y) \simeq 0$ for a.a. simulations

- *Outcome* of $X : X(\omega)$ for some $\omega \in \Omega$. Can be any object : number, function, fuzzy set,
- A sample of X: r.v.s $X_1, \ldots, X_n : X_i \stackrel{i.i.d.}{\sim} \mathbb{P}_X$ Observed sample : outcome x_1, \ldots, x_n of a sample, i.e. $x_i = X_i(\omega)$

• A statistic is a measurable function $T(X_1, \ldots X_n)$ of a sample: it is a r.v. Examples $\bar{X} = \frac{X_1 + \ldots + X_n}{n}$, $S^2 = \frac{(X_1 - \bar{X})^2 + \ldots + (X_n - \bar{X})^2}{n}$, $S = \sqrt{S^2}$. Observed statistic $T(x_1, \ldots x_n)$: it is a number. Examples $\bar{x} = \frac{x_1 + \ldots + x_n}{n}$, $s^2 = \frac{(x_1 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n}$, $s = \sqrt{s^2}$. • LNL: For almost all (a.a.) ω , $\bar{X}(\omega) \longrightarrow \mathbb{E}(X)$ as $n \to \infty$

• Simulation: algorithm whose outputs mimic outcomes of a sample. Ex. (R) $x = runif(100) \rightarrow x_1, \ldots, x_{100}$ with $X_i \stackrel{i.i.d.}{\sim} \lambda_{[0,1]}$, mean $(x) \simeq 0.5$ for a.a. simulations p = c(0.3, 0.5, 0.2), x = sample(1:3, 100, prob = p): sample from a discrete r.v. $y = rnorm(100) \rightarrow y_1, \ldots, y_{100}$ with $Y_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$, mean $(y) \simeq 0$ for a.a. simulations

- *Outcome* of $X : X(\omega)$ for some $\omega \in \Omega$. Can be any object : number, function, fuzzy set,
- A sample of X: r.v.s $X_1, \ldots, X_n : X_i \stackrel{i.i.d.}{\sim} \mathbb{P}_X$ Observed sample : outcome x_1, \ldots, x_n of a sample, i.e. $x_i = X_i(\omega)$

• A statistic is a measurable function $T(X_1, \ldots X_n)$ of a sample: it is a r.v. Examples $\bar{X} = \frac{X_1 + \ldots + X_n}{n}$, $S^2 = \frac{(X_1 - \bar{X})^2 + \ldots + (X_n - \bar{X})^2}{n}$, $S = \sqrt{S^2}$. Observed statistic $T(x_1, \ldots x_n)$: it is a number. Examples $\bar{x} = \frac{x_1 + \ldots + x_n}{n}$, $s^2 = \frac{(x_1 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n}$, $s = \sqrt{s^2}$. • LNL: For almost all (a.a.) ω , $\bar{X}(\omega) \longrightarrow \mathbb{E}(X)$ as $n \to \infty$

• Simulation: algorithm whose outputs mimic outcomes of a sample. Ex. (R) $x = runif(100) \rightarrow x_1, \ldots, x_{100}$ with $X_i \stackrel{i.i.d.}{\sim} \lambda_{[0,1]}$, mean $(x) \simeq 0.5$ for a.a. simulations p = c(0.3, 0.5, 0.2), x = sample(1:3, 100, prob = p): sample from a discrete r.v. $y = rnorm(100) \rightarrow y_1, \ldots, y_{100}$ with $Y_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$, mean $(y) \simeq 0$ for a.a. simulations

II - Models of random binary contexts

Bernoulli Model Hierarchical Bernoulli Models Indian Buffet Latent Block Model

II.1 Bernoulli(p) Model: Simulation

12 / 51

 $D = m \times n$ random binary matrix mn entries $\stackrel{i.i.d.}{\sim} Bern(p)$, $\mathbb{P}(X = 1) = p$, $\mathbb{P}(X = 0) = 1 - p$ Illustration In R software : D = matrix(rbinom(m*n,1,p), m,n) m = 10 rows (customers, objects), $I = 1, \ldots, m$ n = 5 columns (items, attributes) $J = 1, \ldots, n$ p = 0.4 : probability that an entry be equal to 1 Itemset $\{1, 4\}$ may be closed or not closed, depending on the outcome D.

II.1 Bernoulli(p) Model: Simulation

12 / 51

 $D = m \times n$ random binary matrix mn entries $\stackrel{i.i.d.}{\sim} Bern(p)$, $\mathbb{P}(X = 1) = p$, $\mathbb{P}(X = 0) = 1 - p$ Illustration In R software : D = matrix(rbinom(m*n,1,p), m,n) m = 10 rows (customers, objects), $I = 1, \ldots, m$ n = 5 columns (items, attributes) $J = 1, \ldots, n$ p = 0.4 : probability that an entry be equal to 1 Itemset $\{1, 4\}$ may be closed or not closed, depending on the outcome D.

 $p_{j}\ \mathrm{probability}\ \mathrm{that}\ \mathrm{any}\ \mathrm{entry}\ \mathrm{of}\ \mathrm{column}\ j\ \mathrm{be}\ \mathrm{equal}\ \mathrm{to}\ 1$

The entries of the matrix \mathcal{D} are *independent* r.v.s.

O a subset of objects, A a subset of attributes (itemset)

Probability that the rectangle $O \times A$ be a concept ? The rectangle $O \times A$ is a concept (maximal rectangle of ones) if

1. $O \times A$ is filled of ones

and

2. each row of the rectangle $(I - O) \times A$ contains at least one zero

and

 p_j probability that any entry of column j be equal to 1

The entries of the matrix \mathcal{D} are *independent* r.v.s.

O a subset of objects, A a subset of attributes (itemset)

Probability that the rectangle $O \times A$ be a concept ? The rectangle $O \times A$ is a concept (maximal rectangle of ones) iff

1. $O \times A$ is filled of ones

```
and 2. each row of the rectangle (I - O) \times A contains at least one zero
```

and

 p_j probability that any entry of column j be equal to 1

The entries of the matrix \mathcal{D} are *independent* r.v.s.

O a subset of objects, A a subset of attributes (itemset)

Probability that the rectangle $O \times A$ be a concept ? The rectangle $O \times A$ is a concept (maximal rectangle of ones) iff

1. $O \times A$ is filled of ones

and

2. each row of the rectangle $(I - O) \times A$ contains at least one zero

and

 p_j probability that any entry of column j be equal to 1

The entries of the matrix \mathcal{D} are *independent* r.v.s.

O a subset of objects, A a subset of attributes (itemset)

Probability that the rectangle $O \times A$ be a concept ? The rectangle $O \times A$ is a concept (maximal rectangle of ones) iff

1. $O \times A$ is filled of ones

and

2. each row of the rectangle $(I - O) \times A$ contains at least one zero

and

Let $p_A := \prod_{j \in A} p_j$.

```
One row of O \times A is filled with ones with probability (w.p.): p_A = O \times A is filled of ones w.p. p_A^{|O|}
```

2.

One row of $(I - O) \times A$ contains at least one zero w.p. $1 - p_A$ each row of $(I - O) \times A$ contains at least one zero w.p. $(1 - p_A)^{m - |O|}$

3.

Column j of $O \times (J - A)$ contains at least one zero w.p.: $1 - p_j^{|O|}$ each column of $O \times (J - A)$ contains at least one zero w.p.: $\prod_{j \notin A} (1 - p_j^{|O|})$

Due to independency we arrive at **Proposition 1**

14 / 51

Let $p_A := \prod_{j \in A} p_j$.

1. One row of $O \times A$ is filled with ones with probability (w.p.): p_A $O \times A$ is filled of ones w.p. $p_A^{|O|}$

2.

One row of $(I - O) \times A$ contains at least one zero w.p. $1 - p_A$ each row of $(I - O) \times A$ contains at least one zero w.p. $(1 - p_A)^{m - |O|}$

3.

Column j of $O \times (J - A)$ contains at least one zero w.p.: $1 - p_j^{|O|}$ each column of $O \times (J - A)$ contains at least one zero w.p.: $\prod_{j \notin A} (1 - p_j^{|O|})$

Due to independency we arrive at **Proposition 1**

```
14 / 51
```

Let $p_A := \prod_{j \in A} p_j$.

1.

One row of $O\times A$ is filled with ones with probability (w.p.): p_A $O\times A$ is filled of ones w.p. $p_A^{|O|}$

2.

One row of $(I - O) \times A$ contains at least one zero w.p. $1 - p_A$ each row of $(I - O) \times A$ contains at least one zero w.p. $(1 - p_A)^{m - |O|}$

3.

Column j of $O \times (J - A)$ contains at least one zero w.p.: $1 - p_j^{|O|}$ each column of $O \times (J - A)$ contains at least one zero w.p.: $\prod_{j \notin A} (1 - p_j^{|O|})$

Due to independency we arrive at **Proposition 1**

Let $p_A := \prod_{j \in A} p_j$.

1.

One row of $O\times A$ is filled with ones with probability (w.p.): p_A $O\times A$ is filled of ones w.p. $p_A^{|O|}$

2.

One row of $(I - O) \times A$ contains at least one zero w.p. $1 - p_A$ each row of $(I - O) \times A$ contains at least one zero w.p. $(1 - p_A)^{m - |O|}$

3.

Column j of $O \times (J - A)$ contains at least one zero w.p.: $1 - p_j^{|O|}$ each column of $O \times (J - A)$ contains at least one zero w.p.: $\prod_{j \notin A} (1 - p_j^{|O|})$

Due to independency we arrive at **Proposition 1**

Let $p_A := \prod_{j \in A} p_j$.

1.

One row of $O\times A$ is filled with ones with probability (w.p.): p_A $O\times A$ is filled of ones w.p. $p_A^{|O|}$

2.

One row of $(I - O) \times A$ contains at least one zero w.p. $1 - p_A$ each row of $(I - O) \times A$ contains at least one zero w.p. $(1 - p_A)^{m - |O|}$

3.

Column j of $O \times (J - A)$ contains at least one zero w.p.: $1 - p_j^{|O|}$ each column of $O \times (J - A)$ contains at least one zero w.p.: $\prod_{j \notin A} (1 - p_j^{|O|})$

Due to independency we arrive at **Proposition 1**

Let $p_A := \prod_{j \in A} p_j$.

1.

One row of $O\times A$ is filled with ones with probability (w.p.): p_A $O\times A$ is filled of ones w.p. $p_A^{|O|}$

2.

One row of $(I - O) \times A$ contains at least one zero w.p. $1 - p_A$ each row of $(I - O) \times A$ contains at least one zero w.p. $(1 - p_A)^{m - |O|}$

3.

Column j of $O \times (J - A)$ contains at least one zero w.p.: $1 - p_j^{|O|}$ each column of $O \times (J - A)$ contains at least one zero w.p.: $\prod_{j \notin A} (1 - p_j^{|O|})$

Due to independency we arrive at **Proposition 1**

Let $p_A := \prod_{j \in A} p_j$.

1.

One row of $O\times A$ is filled with ones with probability (w.p.): p_A $O\times A$ is filled of ones w.p. $p_A^{|O|}$

2.

One row of $(I - O) \times A$ contains at least one zero w.p. $1 - p_A$ each row of $(I - O) \times A$ contains at least one zero w.p. $(1 - p_A)^{m - |O|}$

3.

Column j of $O \times (J - A)$ contains at least one zero w.p.: $1 - p_j^{|O|}$ each column of $O \times (J - A)$ contains at least one zero w.p.: $\prod_{j \notin A} (1 - p_j^{|O|})$

Due to independency we arrive at **Proposition 1**

14 / 51

Let $p_A := \prod_{j \in A} p_j$.

1.

One row of $O\times A$ is filled with ones with probability (w.p.): p_A $O\times A$ is filled of ones w.p. $p_A^{|O|}$

2.

One row of $(I - O) \times A$ contains at least one zero w.p. $1 - p_A$ each row of $(I - O) \times A$ contains at least one zero w.p. $(1 - p_A)^{m - |O|}$

3.

Column j of $O \times (J - A)$ contains at least one zero w.p.: $1 - p_j^{|O|}$ each column of $O \times (J - A)$ contains at least one zero w.p.: $\prod_{j \notin A} (1 - p_j^{|O|})$

Due to independency we arrive at **Proposition 1**

 \bullet Given A, the preceding proposition shows that the probability only depends on the size |O| of O

• As $\operatorname{Prob}(A \text{ is } k\text{-closed}) = \sum_{O \in \mathcal{P}(I)} \operatorname{Prob}(O \times A \text{ is a concept})$

and there are $\binom{m}{k}$ subsets O such that |O| = k we arrive at the

Proposition 2

$$\mathsf{Prob}(A \text{ is } k\text{-closed}) = \sum_{k=0}^{m} \binom{m}{k} p_A^k (1-p_A)^{m-k} \prod_{j \notin A} (1-p_j^k)$$

• If $p_j = p$ does not depend on j, we have $p_A = p^{|A|}$ and **Proposition 3** Prob(A is k-closed) = $\sum_{k=0}^{m} {m \choose k} p^{k|A|} (1 - p^{|A|})^{m-k} (1 - p^k)^{n-|A|}$

- \bullet Given A, the preceding proposition shows that the probability only depends on the size |O| of O
- As $\operatorname{Prob}(A \text{ is } k\text{-closed}) = \sum_{O \in \mathcal{P}(I)} \operatorname{Prob}(O \times A \text{ is a concept})$

and there are $\binom{m}{k}$ subsets O such that |O| = k we arrive at the

Proposition 2

$$\mathsf{Prob}(A \text{ is } k\text{-closed}) = \sum_{k=0}^{m} {m \choose k} p_A^k (1-p_A)^{m-k} \prod_{j \notin A} (1-p_j^k)$$

• If $p_j = p$ does not depend on j, we have $p_A = p^{|A|}$ and **Proposition 3** Prob(A is k-closed) = $\sum_{k=0}^{m} {m \choose k} p^{k|A|} (1 - p^{|A|})^{m-k} (1 - p^k)^{n-|A|}$

- \bullet Given A, the preceding proposition shows that the probability only depends on the size |O| of O
- As $\operatorname{Prob}(A \text{ is } k\text{-closed}) = \sum_{O \in \mathcal{P}(I)} \operatorname{Prob}(O \times A \text{ is a concept})$

and there are $\binom{m}{k}$ subsets O such that |O| = k we arrive at the

Proposition 2 $\operatorname{Prob}(A \text{ is } k\text{-closed}) = \sum_{k=0}^{m} {m \choose k} p_A^k (1 - p_A)^{m-k} \prod_{j \notin A} (1 - p_j^k)$ • If $p_j = p$ does not depend on j, we have $p_A = p^{|A|}$ and

Proposition 3

 $Prob(A \text{ is } k\text{-closed}) = \sum_{k=0}^{m} {m \choose k} p^{k|A|} (1-p^{|A|})^{m-k} (1-p^k)^{n-|A|}$

- \bullet Given A, the preceding proposition shows that the probability only depends on the size |O| of O
- As $\operatorname{Prob}(A \text{ is } k\text{-closed}) = \sum_{O \in \mathcal{P}(I)} \operatorname{Prob}(O \times A \text{ is a concept})$

and there are $\binom{m}{k}$ subsets O such that |O| = k we arrive at the

Proposition 2 Prob(A is k-closed) = $\sum_{k=0}^{m} {m \choose k} p_A^k (1 - p_A)^{m-k} \prod_{j \notin A} (1 - p_j^k)$

• If $p_j = p$ does not depend on j, we have $p_A = p^{|A|}$ and **Proposition 3** Prob(A is k-closed) = $\sum_{k=0}^{m} {m \choose k} p^{k|A|} (1 - p^{|A|})^{m-k} (1 - p^k)^{n-|A|}$

- \bullet Given A, the preceding proposition shows that the probability only depends on the size |O| of O
- As $\operatorname{Prob}(A \text{ is } k\text{-closed}) = \sum_{O \in \mathcal{P}(I)} \operatorname{Prob}(O \times A \text{ is a concept})$

and there are $\binom{m}{k}$ subsets O such that |O| = k we arrive at the

Proposition 2

$$\mathsf{Prob}(A \text{ is } k\text{-closed}) = \sum_{k=0}^{m} {m \choose k} p_A^k (1-p_A)^{m-k} \prod_{j \notin A} (1-p_j^k)$$

• If $p_j = p$ does not depend on j, we have $p_A = p^{|A|}$ and **Proposition 3** Prob(A is k-closed) = $\sum_{k=0}^{m} {m \choose k} p^{k|A|} (1 - p^{|A|})^{m-k} (1 - p^k)^{n-|A|}$

- \bullet Given A, the preceding proposition shows that the probability only depends on the size |O| of O
- As $\operatorname{Prob}(A \text{ is } k\text{-closed}) = \sum_{O \in \mathcal{P}(I)} \operatorname{Prob}(O \times A \text{ is a concept})$

and there are $\binom{m}{k}$ subsets O such that |O| = k we arrive at the

Proposition 2

$$\mathsf{Prob}(A \text{ is } k\text{-closed}) = \sum_{k=0}^{m} {m \choose k} p_A^k (1-p_A)^{m-k} \prod_{j \notin A} (1-p_j^k)$$

• If $p_j = p$ does not depend on j, we have $p_A = p^{|A|}$ and **Proposition 3** Prob(A is k-closed) = $\sum_{k=0}^{m} {m \choose k} p^{k|A|} (1 - p^{|A|})^{m-k} (1 - p^k)^{n-|A|}$

II.5 Expectation of $|\mathcal{L}|$ in the Bernoulli model case 16/51

 \bullet Since the number of concepts is equal to the number of k-closed itemsets, we have

$$|L| = \sum_{A \in \mathcal{P}(J)} 1_A \text{ is } k\text{-closed}$$

• Taking expectation we get

$$\begin{split} \mathcal{L}(|L|) &= \sum_{A \in \mathcal{P}(J)} prob(A \text{ is } k\text{-closed}) \\ &= \sum_{A \in \mathcal{P}(J)} \sum_{k=0}^{m} \binom{m}{k} p^{k|A|} (1-p^{|A|})^{m-k} (1-p^k)^{n-|A|} \end{split}$$

and grouping the subsets A with same cardinality we get **Theorem 1**

$$\mathbb{E}(|L|) = \sum_{l=0}^{n} \binom{n}{l} \sum_{k=0}^{m} \binom{m}{k} p^{kl} (1-p^l)^{m-k} (1-p^k)^{n-l}$$

II.5 Expectation of $|\mathcal{L}|$ in the Bernoulli model case 16/51

 \bullet Since the number of concepts is equal to the number of k-closed itemsets, we have

$$|L| = \sum_{A \in \mathcal{P}(J)} \mathbf{1}_A \text{ is } k\text{-closed}$$

• Taking expectation we get

$$\begin{split} \mathbb{E}(|L|) &= \sum_{A \in \mathcal{P}(J)} prob(A \text{ is } k\text{-closed}) \\ &= \sum_{A \in \mathcal{P}(J)} \sum_{k=0}^m \binom{m}{k} p^{k|A|} (1-p^{|A|})^{m-k} (1-p^k)^{n-|A|} \end{split}$$

and grouping the subsets A with same cardinality we get **Theorem 1**

$$\mathbb{E}(|L|) = \sum_{l=0}^{n} \binom{n}{l} \sum_{k=0}^{m} \binom{m}{k} p^{kl} (1-p^l)^{m-k} (1-p^k)^{n-l}$$

II.5 Expectation of $|\mathcal{L}|$ in the Bernoulli model case 16/51

 \bullet Since the number of concepts is equal to the number of k-closed itemsets, we have

$$|L| = \sum_{A \in \mathcal{P}(J)} 1_A \text{ is } k\text{-closed}$$

• Taking expectation we get

$$\begin{split} \mathbb{E}(|L|) &= \sum_{A \in \mathcal{P}(J)} prob(A \text{ is } k\text{-closed}) \\ &= \sum_{A \in \mathcal{P}(J)} \sum_{k=0}^m \binom{m}{k} p^{k|A|} (1-p^{|A|})^{m-k} (1-p^k)^{n-|A|} \end{split}$$

and grouping the subsets A with same cardinality we get $\ensuremath{\mathbf{Theorem 1}}$

$$\mathbb{E}(|L|) = \sum_{l=0}^{n} \binom{n}{l} \sum_{k=0}^{m} \binom{m}{k} p^{kl} (1-p^l)^{m-k} (1-p^k)^{n-l}$$

II.6 Variance of $|\mathcal{L}|$ in the Bernoulli model case 17/51

• Computation of Prob(A and B be closed), A, $B \in \mathcal{P}(J)$

Instead of having just 3 cases, namely $O \times A$, $I - O \times A$, $O \times J - A$, it appears 16 cases. Some formulas in (Emilion-Lévy can be simplified).

• Taking expectation yields $\mathbb{E}(|L|^2)$ and therefore $var(|L|) = \mathbb{E}(|L|^2) - (\mathbb{E}(|L|))^2$

II.6 Variance of $|\mathcal{L}|$ in the Bernoulli model case 17 / 51

• Computation of Prob(A and B be closed), A, $B \in \mathcal{P}(J)$

Instead of having just 3 cases, namely $O \times A$, $I - O \times A$, $O \times J - A$, it appears 16 cases. Some formulas in (Emilion-Lévy can be simplified).

• Taking expectation yields $\mathbb{E}(|L|^2)$ and therefore $var(|L|) = \mathbb{E}(|L|^2) - (\mathbb{E}(|L|))^2$

II.6 Variance of $|\mathcal{L}|$ in the Bernoulli model case 17 / 51

• Computation of Prob(A and B be closed), A, $B \in \mathcal{P}(J)$

Instead of having just 3 cases, namely $O \times A$, $I - O \times A$, $O \times J - A$, it appears 16 cases. Some formulas in (Emilion-Lévy can be simplified).

• Taking expectation yields $\mathbb{E}(|L|^2)$ and therefore $var(|L|) = \mathbb{E}(|L|^2) - (\mathbb{E}(|L|))^2$