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Part | - Introduction

Motivations, Modelling, Sampling
Basics of Probability and Statistics
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1.1 Motivations 4 /51

e Context C = (I, J, D) (Binary matrix case), L its concept lattice.
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1.1 Motivations 4 /51

e Context C = (I, J, D) (Binary matrix case), L its concept lattice.

e Examples of complex and time consuming tasks: listing £, frequent itemsets, associative
rules

e Probabilistic and Statistical methods can bring a specific insight to these taks using:
1. Modeling

2. Sampling, Bootstrapping

3. Simulation
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1.2 Modeling 5/51

e Model: Mathematical representation that can describe/mimic a real system
e Deterministic models, Probabilistic (Stochastic) models
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1.2 Modeling 5/51

e Model: Mathematical representation that can describe/mimic a real system
e Deterministic models, Probabilistic (Stochastic) models

e Ex. Modeling a real context (and L, if possible) submitted to a random environment:
customer purchases, meteorological measurements, patient diseases ...

e Observed measurements are considered outcomes of a probabilistic model.
e Statistics tasks:

- Model Fitting: Estimation of the model parameters from the observations
- Performing Tests and proposing Confidence Intervals

- Model selection

e Some Interest of models:
Framework for exact computations (concerning, e.g., £) and for prediction
Framework for finding the true concepts and not only the empirical concepts
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1.3 Sampling 6/51

e Consider a given C or L as a population: Sample, Bootstrap individuals from C or from L
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1.3 Sampling 6/51

e Consider a given C or L as a population: Sample, Bootstrap individuals from C or from L
e Application : Concept Counting (estimating |L]|), and quickly check the feasibility of a
potentially exponential time listing of all concepts
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1.4 Measurable spaces 7/51

e Let Q2 a nonvoid set and P(2) its power set
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1.5 Probability spaces 8 /51

e A probability measure P on (€2, F) is a mapping P : F — [0, 1] such that
P(Q2) = 1,P(UA,) = >, P(A,) for pairwise disjoint A,
Probability space: (€2, F,P)
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P(Q2) = 1,P(UA,) = >, P(A,) for pairwise disjoint A,
Probability space: (92, F,P)

e Examples ) finite P(A) = %. Q={wi,...,wn,...},Plwn) =pp >0, pn = 1.
Q2 =1[0,1], P([a,b]) =b—0a,0<a<b<1

eAnullset NisaNeF:P(N)=0

e Let prop be a property which an element w € 2 may or may not have. We will say that
prop holds almost everyhere (a.e.) if {w € Q : prop(w) is false} is a nullset

e A family of events A; € F,i € I is independent if for any finite subset J C I we have
P(Njesd;) = [1je, P(4;)

e A family F;,¢ € I of sub o-algebras of F is independent if any family A;,i € I, with

A; € F;, is independent
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1.6 Random variables 9/51

e Let (2, F,P) be a probability space and (V,V) a measurable space. A V-valued random
variable is a mapping X :  — V which is measurable, i.e. X~1(V) C F
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e Let (2, F,P) be a probability space and (V,V) a measurable space. A V-valued random

variable is a mapping X :  — V which is measurable, i.e. X~1(V) C F

e Recall thatif Be V, X }(B)={weQ: X(w) € B} ={X € B}
X1(V) ={X~YB),B € V} is the smallest o-algebra which makes X measurable
X~Y(V) is denoted o(X): o-algebra generated by X

e Px(B) = P(X~1(B)) defines a probability measure on V called the (probability)
distribution of X: shortly X ~ Px

Examples V = N,Px({n}) =P(X =n) = e‘ei X ~ Pozsson(é’) 0>0

V =R,Px(B) = P(X € B) = [,, f(z)dz with f >0, [, f(x)dz = 1.
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e Let (2, F,P) be a probability space and (V,V) a measurable space. A V-valued random

variable is a mapping X :  — V which is measurable, i.e. X~1(V) C F

e Recall thatif Be V, X }(B)={weQ: X(w) € B} ={X € B}
X1(V) ={X~YB),B € V} is the smallest o-algebra which makes X measurable
X~Y(V) is denoted o(X): o-algebra generated by X

e Px(B) = P(X~1(B)) defines a probability measure on V called the (probability)
distribution of X: shortly X ~ Px

Examples V = N,Px({n}) =P(X =n) = e‘ei X ~ Pozsson(@) 0>0

V =R,Px(B) =P(X € B) = [, f(x)dx with f >0, [, f(z)dz = 1.

e X;,i € I are said independent (i) iff the o-algebras o(X;) are independent
e Xj,i € I are said identically distributed (i.d.) iff Px, = Px, forall i,s' € I
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1.7 Statistics, Computer simulation 10 /51

e Outcome of X : X (w) for some w € €. Can be any object : number, function, fuzzy set,
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e Outcome of X : X (w) for some w € €. Can be any object : number, function, fuzzy set,
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Observed sample : outcome z1,...x, of a sample, i.e. z; = X;(w)

R. Emilion (DAMOL)

Relational Data Analysis, Sept 2-5, 2013, Olomouc

September 4, 2013 10 / 51



1.7 Statistics, Computer simulation 10 /51

e Outcome of X : X (w) for some w € €. Can be any object : number, function, fuzzy set,

o Asample of X : rvss Xi,... X, : X; "= Py

Observed sample : outcome z1,...x, of a sample, i.e. z; = X;(w)

e A statistic is a measurable function T'( X, ... X,,) of a sample: it is a r.v.

Examples X = X1tetin G2 — (Xl_X)QJ“T‘Z'J“(X”_X)Q, S =/S2.

Observed statistic T'(x1,...xy,): it is a number.
22 2
Examples 7 = fit=tin o2 — (21=2)" 4.+ (20 =T) s =52,

e LNL: For almost all (a.a.) w, X(w) — E(X) as n — o0
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e Simulation: algorithm whose outputs mimic outcomes of a sample. Ex. (R)
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Il - Models of random binary contexts

Bernoulli Model

Hierarchical Bernoulli Models
Indian Buffet

Latent Block Model
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I1.1 Bernoulli(p) Model: Simulation 12 /51

D = m x n random binary matrix

mn entries "< Bern(p), (X =1)=p,P(X =0)=1—p
[llustration In R software : D = matrix(rbinom(m*n,1,p), m,n)
m = 10 rows (customers, objects), I =1,...,m

n =5 columns (items, attributes) J =1,...,n

p = 0.4 : probability that an entry be equal to 1

Itemset {1,4} may be closed or not closed, depending on the outcome D.
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mn entries "< Bern(p), (X =1)=p,P(X =0)=1—p
[llustration In R software : D = matrix(rbinom(m*n,1,p), m,n)
m = 10 rows (customers, objects), I =1,...,m

n =5 columns (items, attributes) J =1,...,n

p = 0.4 : probability that an entry be equal to 1

Itemset {1,4} may be closed or not closed, depending on the outcome D.
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11.2 Random Concepts 13 /51

pj probability that any entry of column j be equal to 1
The entries of the matrix D are independent r.v.s.
O a subset of objects, A a subset of attributes (itemset)

Probability that the rectangle O x A be a concept ?
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The entries of the matrix D are independent r.v.s.
O a subset of objects, A a subset of attributes (itemset)

Probability that the rectangle O x A be a concept ?
The rectangle O x A is a concept (maximal rectangle of ones) iff

1. O x A is filled of ones
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pj probability that any entry of column j be equal to 1
The entries of the matrix D are independent r.v.s.

O a subset of objects, A a subset of attributes (itemset)
Probability that the rectangle O x A be a concept ?

The rectangle O x A is a concept (maximal rectangle of ones) iff
1. O x A is filled of ones

and

2. each row of the rectangle (I — O) x A contains at least one zero
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11.2 Random Concepts 13 /51

pj probability that any entry of column j be equal to 1
The entries of the matrix D are independent r.v.s.
O a subset of objects, A a subset of attributes (itemset)

Probability that the rectangle O x A be a concept ?
The rectangle O x A is a concept (maximal rectangle of ones) iff

1. O x A is filled of ones

and
2. each row of the rectangle (I — O) x A contains at least one zero

and
3. each column of the rectangle O x (J — A) contains at least one zero
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11.3 Computation in the Bernoulli model case 14 /51

Let py = [jeap;.
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11.3 Computation in the Bernoulli model case 14 /51

Let pa := IIjcap;.
1.
One row of O x A is filled with ones with probability (w.p.): pa
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11.3 Computation in the Bernoulli model case 14 /51

Let pa := ILjcap;.
1.
One row of O x A is filled with ones with probability (w.p.): pa

O x A is filled of ones w.p. p|AO|
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11.3 Computation in the Bernoulli model case

Let pa := ILjcap;.
1

One row of O x A is filled with ones with probability (w.p.): pa
O x A is filled of ones w.p. p|o|

A
2.
One row of (I — O) x A) contains at least one zero w.p. 1 —py
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11.3 Computation in the Bernoulli model case 14 /51

Let pa := ILjcap;.

1.

One row of O x A is filled with ones with probability (w.p.): pa
O x A is filled of ones w.p. p'AO‘
2.

One row of (I — O) x A) contains at least one zero w.p. 1 —py

each row of (I — O) x A) contains at least one zero w.p. (1 —p4)™ 1€
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Let pa := ILjcap;.

1.

One row of O x A is filled with ones with probability (w.p.): pa
O x A is filled of ones w.p. p'AO‘

2.

One row of (I — O) x A) contains at least one zero w.p. 1 —py
each row of (I — O) x A) contains at least one zero w.p. (1 —py)

3.
Column j of O x (J — A) contains at least one zero w.p.: 1 — p|jo‘

m—|0|
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Column j of O x (J — A) contains at least one zero w.p.: 1 — p|jo‘
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11.3 Computation in the Bernoulli model case 14 /51

Let pa := ILjcap;.

1.

One row of O x A is filled with ones with probability (w.p.): pa
O x A is filled of ones w.p. pIAO‘

2.

One row of (I — O) x A) contains at least one zero w.p. 1 —py
each row of (I — O) x A) contains at least one zero w.p. (1 —py)

3.
Column j of O x (J — A) contains at least one zero w.p.: 1 —p|jo‘

m—|0|

each column of O x (J — A) contains at least one zero w.p.: ILjg4(1 —p‘jol)

Due to independency we arrive at
Proposition 1
O x A is a maximal rectangle w.p. p‘AO|(1 —pa)™ IO g a(1 — p|jo|)
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1.4 Probability of A be closed, in the Bernoulli model case
15 /51

e Given A, the preceding proposition shows that the probability only depends on the size
|O| of O
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e Given A, the preceding proposition shows that the probability only depends on the size
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e Given A, the preceding proposition shows that the probability only depends on the size
|O| of O

® As Prob(A is k-closed) = > 5cp () Prob(O x A is a concept)

and there are (') subsets O such that |O| = k we arrive at the
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1.4 Probability of A be closed, in the Bernoulli model case
15 /51

e Given A, the preceding proposition shows that the probability only depends on the size
|O| of O

® As Prob(A is k-closed) = > 5cp () Prob(O x A is a concept)

and there are (') subsets O such that |O| = k we arrive at the

Proposition 2
Prob(A is k-closed) = "1 (7)ph(1 — pa)™ *ILjga(1 — pé“)
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1.4 Probability of A be closed, in the Bernoulli model case
15 /51

e Given A, the preceding proposition shows that the probability only depends on the size
|O| of O

® As Prob(A is k-closed) = > 5cp () Prob(O x A is a concept)
and there are (') subsets O such that |O| = k we arrive at the
Proposition 2

Prob(A is k-closed) = Y"1 (7)p% (1 — pa)™ FILjga(1 — pé“)

o If p; = p does not depend on j, we have p4 = pl4l and
Proposition 3
Prob(A is k-closed) = Y7 (?)pk|f4|(1 — plAlym=k(1 _ pkyn—IA|
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11.5 Expectation of |£| in the Bernoulli model case 16 /51

e Since the number of concepts is equal to the number of k-closed itemsets, we have

|L| = Z 14 is k-closed

AeP(J)
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11.5 Expectation of |£| in the Bernoulli model case 16 /51

e Since the number of concepts is equal to the number of k-closed itemsets, we have

|L| = Z 14 is k-closed

AeP(J)
e Taking expectation we get
E(|L|) = ) prob(Ais k-closed)
AeP(J)
_ Z Z( > k|A| p|A|)m—k(1_pk)n—|A\
AeP(J) k=0
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11.5 Expectation of |£| in the Bernoulli model case 16 /51

e Since the number of concepts is equal to the number of k-closed itemsets, we have

|L| = Z 14 is k-closed

AeP(J)
e Taking expectation we get
E(IL)) = Y prob(Ais k-closed)
AeP(J)
_ Z Z < ) k|A| p|A|)m7k(1 _pk)nf|A\
AeP(J) k=0

and grouping the subsets A with same cardinality we get
Theorem 1

E(|L]) = zn: (?) i (Z"L)pkl(l _ phymR (1 =yt

k=0

=0
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11.6 Variance of |£| in the Bernoulli model case 17 /51

e Computation of Prob(A and B be closed), A, B € P(J)
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11.6 Variance of |£| in the Bernoulli model case 17 /51

e Computation of Prob(A and B be closed), A, B € P(J)

Instead of having just 3 cases, namely O x A, I — O x A, O x J — A, it appears 16 cases.
Some formulas in (Emilion-Lévy can be simplified).
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11.6 Variance of |£| in the Bernoulli model case 17 /51

e Computation of Prob(A and B be closed), A, B € P(J)

Instead of having just 3 cases, namely O x A, I — O x A, O x J — A, it appears 16 cases.
Some formulas in (Emilion-Lévy can be simplified).

e Taking expectation yields E(|L|?) and therefore var(|L|) = E(|L|?) — (E(|L|))?
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