Relational Similarity-Based Databases I

Vilem Vychodil (Palacky University, Olomouc)

Palacky University, Olomouc, Czech Republic

INVESTMENTS IN EDUCATION DEVELOPMENT

Relational Similarity-Based Databases

general relational model of data:

- generalization of the classic RM (E. F. Codd)
- similarity relations on domains
- ranks assigned to tuples

motivation:

similarity-based queries

"Show all houses that are sold for \$600,000."

approximate dependencies in data

"Do houses in similar locations have similar prices?"

goal:

- rank-aware approach with solid logical foundations (logics of residuated structures)
- focus on all DB aspects (foundations, querying, dependencies, algorithms, ...)

Similarity-Based Query: An Example

id	type	location	built	bdrm	sqft	price
45	Single Family	Green St	1979	3	1180	\$754,000
66	Ranch	Fulton St	1977	2	2400	\$998,000
78	Single Family	Purdue Ave	1962	4	1360	\$850,000
81	Residential	Hamilton Ave	1961	5	1450	\$986,000
82	Condominium	Fulton St	1998	2	650	\$540,000
87	Single Family	Bryant St	1927	3	1230	\$854,000
95	Log Cabin	Schembri Ln	1936	2	750	\$754,000
97	Penthouse	Cabrillo St	1984	1	932	\$720,000

Similarity-Based Query: An Example

	id	type	location	built	bdrm	sqft	price
0.890	82	Condominium	Fulton St	1998	2	650	\$540,000
0.595	97	Penthouse	Cabrillo St	1984	1	932	\$720,000
0.535	87	Single Family	Bryant St	1927	3	1230	\$854,000
0.487	66	Ranch	Fulton St	1977	2	2400	\$998,000
0.472	45	Single Family	Green St	1979	3	1180	\$754,000
0.277	81	Residential	Hamilton Ave	1961	5	1450	\$986,000
0.213	95	Log Cabin	Schembri Ln	1936	2	750	\$754,000

"Show houses located in Old Palo Alto and sold for \$600,000."

Example ("Show houses with prices similar to \$600,000" in SQL)

```
CREATE TABLE house (
```

```
price NUMERIC NOT NULL
```

);

```
INSERT INTO house VALUES ····
```

CREATE FUNCTION sim (NUMERIC, NUMERIC) RETURNS NUMERIC AS 'SELECT least (1, greatest (0, 1 + abs (\$1 - \$2) / -200000.0));' LANGUAGE SQL;

```
SELECT *, sim (price, 600000) AS rank
FROM house
ORDER BY sim DESC
LIMIT 5;
```

Related work (1 of 2)

Fagin at al.

- R. Fagin. Combining fuzzy information: an overview. *ACM SIGMOD Record* 31(2):109–118, 2002.
- Natsev, Chang, Smith, Li, Vitter: Supporting incremental join queries on ranked inputs.
 In: VLDB 2001, pp. 281–290.
- Cohen, Sagiv: An incremental algorithm for computing ranked full disjunctions. In: *PODS 2005*, pp. 98–107.

RankSQL + related research

- Li, Chang, Ilyas, Song: RanSQL: Query Algebra and Optimization for Relational top-k queries.
 In: ACM SIGMOD 2005, pages 131–142, 2005.
- Illyas, Aref, Elmagarmid: Supporting top-*k* join queries in relational databases. *The VLDB Journal* 13:207–221, 2004.

Related work (2 of 2)

Extensions of Codd's model employing fuzzy logic

- several approaches (including "fuzzy data"), many papers
- Raju, Majumdar, Fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems.
 ACM Trans. Database Systems 12:120, 166, 1088

ACM Trans. Database Systems 13:129–166, 1988.

Extensions of Codd's model employing probability

- different both semantically and technically (degrees of belief \neq degrees of truth)
- D. Dey and S. Sarkar S. A probabilistic relational model and algebra. *ACM Trans. Dat. Syst.* 21:339–369, 1996.
- Fuhr, Rölleke, A probabilistic relational algebra for the integration of information retrieval and database systems. *ACM Trans. Information Systems* 15:32–66, 1997.
- Dalvi, Ré, Suciu, Probabilistic databases: diamonds in the dirt. *Communications of the ACM* 52:86–94, 2009.

Preliminaries from the Classic RM

attributes = names for columns of ranked data tables

- *Y*: denumerable set of all attributes
- attributes denoted y, y', y_1, y_2, \ldots

relation schemes = finite subsets $R \subseteq Y$

- relation schemes determine table columns (as in the Codd model) cartesian (direct) product =
- set $\prod_{i \in I} A_i$ of all maps $f: I \to \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$ for all $i \in I$ (for given *I*-indexed set $\{A_i \mid i \in I\}$ of sets)

domains =

• sets of attribute values (D_y is domain of $y \in Y$)

tuples =

- elements of $\prod_{y \in R} D_y$ ($R \subseteq Y$)
- denoted $r \in \operatorname{Tupl}(R)$ (*r* is tuple on *R* over D_y 's); r(y) is called *y*-value of *r*

Motivation for Our Approach (1 of 3)

we want:

• similarity-based queries answered by imprecise matches

generalized RM:

- Shift from two-element Boolean algebra to (complete) residuated lattices
- Structure of matches in the classic RM \Longrightarrow the generalized RM

starting with the classic RM: \mathcal{D} on R can be viewed:

 $\mathcal{D}: \prod_{y \in R} D_y \to \{0, 1\}$

so that for only finitely many tuples $r \in \prod_{y \in R} D_y$: $\mathcal{D}(r) = 1$.

interpretation (if \mathcal{D} is answer to Q)

 $\mathcal{D}(r) = 1$ means "the tuple r matches the query Q"

 $\mathcal{D}(r)=0$ means "the tuple r does not match the query $Q^{\prime\prime}$

Motivation for Our Approach (2 of 3)

take a partially ordered set $\langle L, \leq, 0 \rangle$ instead of $\langle \{0, 1\}, \leq \rangle$:

$$\mathcal{D}: \prod_{y \in R} D_y \to L$$
 (ranked data table, an RDT)

so that for only finitely many tuples $r \in \prod_{y \in R} D_y$: $\mathcal{D}(r) \neq 0$

desirable properties of L and \leq :

- lower and upper bound in L (0 for no match, 1 for full match),
- $\langle L, \leq \rangle$ is a complete lattice;
- additional operations on *L* to *aggregate degrees*.

conjunctive aggregator \otimes motivated by *natural join* (for \mathcal{D}_1 on $R \cup S$ and \mathcal{D}_2 on $S \cup T$):

 $(\mathcal{D}_1 \bowtie \mathcal{D}_2)(rst) = \mathcal{D}_1(rs) \otimes \mathcal{D}_2(st)$, (R, S, T are pairwise disjoint)

with \otimes : $\{0,1\}^2 \rightarrow \{0,1\}$ defined by $1 \otimes 1 = 1$ and $1 \otimes 0 = 0 \otimes 1 = 0 \otimes 0 = 0$

Motivation for Our Approach (3 of 3)

in our setting: $\otimes : L^2 \to L$ such that $\langle L, \otimes, 1 \rangle$ is a commutative monoid and \otimes is distributive w.r.t. \bigvee (stronger condition than monotony):

 $a \otimes \bigvee_{i \in I} b_i = \bigvee_{i \in I} (a \otimes b_i)$

which is equivalent to: $(L, \otimes, 1)$ is a commutative monoid and there is (uniquely given) $\rightarrow: L^2 \rightarrow L$ such that

 $a \otimes b \leq c$ iff $a \leq b \rightarrow c$ (adjointness property)

altogether: $\mathbf{L} = \langle L, \wedge, \vee, \otimes, \rightarrow, 0, 1 \rangle$ is a (complete) residuated lattice, i.e.

- $\langle L, \wedge, \vee, 0, 1 \rangle$... (complete) lattice,
- $\langle L, \otimes, 1 \rangle$... commutative monoid,
- $\langle \otimes, \rightarrow \rangle$... adjoint pair $(a \otimes b \leq c \text{ iff } a \leq b \rightarrow c)$.

Residuated Structures in Fuzzy Logics

- fuzzy logic in **broad sense**: any application of fuzzy approach in modeling
 - Zadeh L A.: Fuzzy sets. Inf. Control (1965)
 - simple observations on handling of vagueness
- fuzzy logic in narrow sense: mathematical fuzzy logic
 - Hájek P.: Metamathematics of Fuzzy Logic. (1998)
 - Basic Logic (BL-logic), propositional/predicate; logic of continuous t-norms
 - Höhle, Esteva, Godo, Gottwald, Montagna, ...
 - various logical calculi (MTL-logic)

basic principles:

- adjointness derived from graded modus ponens
- propositions allowed to have "intermediate truth degrees", like:

||value x is similar to value $y||_{\mathbf{M}} = 0.9$

• our case: $||\varphi||_{\mathbf{M},v}$ (φ formula; \mathbf{M} database instance; v induced by tuples)

Domains with Similarities

similarity relations on domains (needed for approximate matches) each domain D_y equipped with map $\approx_y : D_y \times D_y \to L$ satisfying:

(Ref) for each
$$d \in D_y$$
: $d \approx_y d = 1$,

(Sym) for each $d_1, d_2 \in D_y$: $d_1 \approx_y d_2 = d_2 \approx_y d_1$, and (optionally):

(Sep) for each $d_1, d_2 \in D_y$: $d_1 \approx_y d_2 = 1$ iff d_1 equals d_2 , and

(Tra) for each
$$d_1, d_2, d_3 \in D_y$$
: $d_1 \approx_y d_2 \otimes d_2 \approx_y d_3 \leq d_1 \approx_y d_3$.

so-called similarity relation

domain with similarity = $\langle D_y, \approx_y \rangle$, where

- D_y is domain of attribute $y \in Y$;
- \approx_y is similarity on D_y .

notes:

- interpretation: $u \approx_y v =$ degree to which u and v are similar
- boundary case: strict identity

Ranked Data Tables over Domains with Similarities

central notion to our model:

- formal counterpart to relations on relation schemes from Codd's model
- in mathematical fuzzy logic: interpretations of relation symbols

Definition (ranked data table)

Let $R \subseteq Y$ be a relation scheme and each $\langle D_y, \approx_y \rangle$ be a domain with similarity $(y \in R)$. A ranked data table on R over $\{\langle D_y, \approx_y \rangle | y \in R\}$ is any map $\mathcal{D}: \operatorname{Tupl}(R) \to L$ so that for only finitely many tuples $r \in \prod_{y \in R} D_y: \mathcal{D}(r) \neq 0$.

notes:

- RDTs are denoted $\mathcal{D}, \mathcal{D}', \mathcal{D}_1, \dots$
- RDT on R over $\{\langle D_y, \approx_y \rangle | y \in R\}$ = fuzzy relation between D_y
- degree $\mathcal{D}(r)$ is called a rank of r in \mathcal{D}

Special Cases of RDTs

two important special cases:

Definition (RDTs on empty relation schemes)

For each $a \in L$, define $a_{\emptyset} = \{ \langle \emptyset, a \rangle \}$.

Definition (singleton RDTs)

For each $y \in Y$ and $d \in D_y$, define $[y:d] = \{\langle \{\langle y, d \rangle \}, 1 \rangle \}$.

notes:

• a_{\emptyset} is RDT on $R = \emptyset$ such that $a_{\emptyset}(\emptyset) = a$ (C. J. Date: $0_{\emptyset} = \text{TABLE_DUM}, 1_{\emptyset} = \text{TABLE_DEE}$)

•
$$[y:d]$$
 is RDT on $R = \{y\}$ such that $[y:d](r) = \begin{cases} 1, & \text{if } r(y) = d, \\ 0, & \text{otherwise} \end{cases}$

Notes on Generalization of Codd's Model of Data

classic relational model results by:

- taking two-valued Boolean algebra for L (complete residuated lattice);
- considering each \approx_y to be identity relation on D_y

consequence: all ranks become 1 (match) and 0 (no match)

nonranked RDT

- all ranks are from $\{0,1\} \subseteq L$, **L** is arbitrary;
- stored data prior to querying;

Important feature of our model: stored data = results of queries

RDTs represent both

- stored data, and
- results of queries.

Notes on Domain Similarities and Ranks

Where do similarities come from?

- can be assigned by an expert:
 - finite L or a finite subset of infinite linear L;
 - Likert scale $L = \{1, ..., 5\}$ of degrees of satisfaction (Miller's 7 ± 2 phenomenon);
- can be determined based on "distance":
 - L on [0,1] with \otimes being continuous Archimedean t-norm;
 - (pseudo)metric \implies \otimes -transitive similarity;
- similarities are *purpose dependent*;
- implementation remark: can be stored (as data) / computed on demand.

Where do ranks come from?

- appear from nonranked data after performing similarity-based queries,
- can be assigned by experts,
- important aspect: comparative meaning of truth degrees.

Example (similarity on domain of "house prices")

$$d_1 \approx_{price} d_2 = s(|\log_b d_1 - \log_b d_2|)$$
$$b = 1 + 10^{-4}$$
$$s(x) = 1 - x \cdot 10^{-4}$$

example:

 $1,000 \approx_{price} 2,000 = 0.306$ $\$100,000 \approx_{\textit{price}} \$101,000 = 0.990$

\$1,000,000

Example (similarity on domain of "construction years")

$$d_1 \approx_{year} d_2 = s(|d_1 - d_2|)$$

 $s(x) = 1 - x \cdot 150^{-1}$

example:

 $1800 \approx_{year} 1840 = 0.733$ $1960 \approx_{year} 2000 = 0.733$ \vdots \vdots

Example (similarity on domain of "property types")

Single Family

Residential

Ranch

Penthouse

Log Cabin

Condominium

Operations with RDTs

goal:

- propose set of (basic) operations with RDTs
- purpose: querying by performing operations with RTDs (relation algebra)
- questions: basic/derived operations, expressive power, ...

groups of operations in our model:

- counterparts to boolean operations (union, intersection, residuum)
- natural join (and cross join)
- projection and residuated division
- similarity-based restrictions
- kernel and support
- renaming attributes

derived operations and extensions (II. part)

Counterparts to Boolean Intersection and Union

Definition

For RDTs \mathcal{D}_1 and \mathcal{D}_2 on relation scheme R, we define

$$\begin{aligned} (\mathcal{D}_1 \cup \mathcal{D}_2)(r) &= \mathcal{D}_1(r) \lor \mathcal{D}_2(r), \\ (\mathcal{D}_1 \cap \mathcal{D}_2)(r) &= \mathcal{D}_1(r) \land \mathcal{D}_2(r), \\ (\mathcal{D}_1 \otimes \mathcal{D}_2)(r) &= \mathcal{D}_1(r) \otimes \mathcal{D}_2(r), \end{aligned}$$

for all tuples r on R. $\mathcal{D}_1 \cup \mathcal{D}_2$ is called a **union** of \mathcal{D}_1 and \mathcal{D}_2 ; $\mathcal{D}_1 \cap \mathcal{D}_2$ and $\mathcal{D}_1 \otimes \mathcal{D}_2$ are called the \wedge -**intersection** and \otimes -**intersection** of \mathcal{D}_1 and \mathcal{D}_2 , respectively.

idempotent vs. non-indempotent conjunction:

- RDT \mathcal{D} on relation scheme R is called **idempotent** (with respect to \otimes) if $\mathcal{D} \otimes \mathcal{D} = \mathcal{D}$
- example: for $\mathcal{D}_1(r) = 0.5$ and $\mathcal{D}_2(r) = \cdots = \mathcal{D}_k(r) = 0.98$, we distinguish:
 - worst-match semantics: $(\mathcal{D}_1 \cap \cdots \cap \mathcal{D}_k)(r) = 0.5$ (also if $\mathcal{D}_2(r) = \cdots = \mathcal{D}_k(r) = 0.5$)
 - all-match semantics: $(\mathcal{D}_1 \otimes \cdots \otimes \mathcal{D}_k)(r) = 0.5 \cdot 0.98^{k-1}$ for Goguen \otimes $(\mathcal{D}_1 \otimes \cdots \otimes \mathcal{D}_k)(r) = 0.5^k \lll 0.5 \cdot 0.98^{k-1}$ if $\mathcal{D}_2(r) = \cdots = \mathcal{D}_k(r) = 0.5$

Operations Based on Residuated Implication

issues with finiteness:

- componentwise application of \rightarrow : $(\mathcal{D}_1 \rightarrow \mathcal{D}_2)(r) = \mathcal{D}_1(r) \rightarrow \mathcal{D}_2(r)$
- if at least one D_y is infinite: $(\mathcal{D}_1 \to \mathcal{D}_2)(r) = 1$ for *infinitely many* r

(one possible) solution: for arbitrary degrees $a, b, c \in L$, define $b \rightarrow^a c \in L$ as follows:

 $b \Rightarrow^a c = a \otimes (b \rightarrow c)$ (a-residuum of $b \in L$ with respect to $c \in L$)

Definition (residuum of RDTs)

For RDTs $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$ on R, we put

$$(\mathcal{D}_1 \twoheadrightarrow^{\mathcal{D}_3} \mathcal{D}_2)(r) = \mathcal{D}_1(r) \twoheadrightarrow^{\mathcal{D}_3(r)} \mathcal{D}_2(r)$$

for all tuples $r. \mathcal{D}_1 \rightarrow \mathcal{D}_3 \mathcal{D}_2$ is a **residuum** of \mathcal{D}_1 with respect to \mathcal{D}_2 which ranges over \mathcal{D}_3 .

note:

•
$$\mathcal{D}_1 \rightarrow \mathcal{D}_3 \mathcal{D}_2 \subseteq \mathcal{D}_3$$
 (result of \rightarrow in an RDT)

Theorem (properties of \rightarrow)

- $\bullet \to^1 c = b \to c,$
- $2 \quad 1 \to^a c = 1 \to^c a = a \otimes c,$
- $0 \to^a c = b \to^a 1 = a,$
- $b \to^0 c = b \to^b 0 = 1 \to^b 0 = 0,$
- $b \twoheadrightarrow^a c \le b \twoheadrightarrow^1 (a \otimes c),$
- $\mathbf{0} \rightarrow$ is monotone in the first and in the third argument,
- $\bigcirc \rightarrow$ is antitone in the second argument,
- $a \twoheadrightarrow^a b \le a \land b,$
- 9 if **L** is divisible, then $a \rightarrow^a b = a \wedge b$,
- **(D)** if **L** is a linear Π -algebra, then $b \leq c$ iff $b \rightarrow^a c = a$ for all a > 0,
- $\textcircled{0} b \Rightarrow^{b} c = c$ iff there is $x \in L$ such that $1 \Rightarrow^{x} b = c$,
- $1 \to^a b \le c \text{ iff } a \le b \to^1 c.$

$$\langle \otimes, \rightarrow \rangle$$
 vs. $ightarrow$

Theorem

Let $\mathbf{L} = \langle L, \wedge, \vee, \rightarrow, 0, 1 \rangle$ be a structure such that $\langle L, \wedge, \vee, 0, 1 \rangle$ is a bounded lattice and \rightarrow be a ternary operation satisfying the following conditions:

$$1 \rightarrow^{a} 1 = a,$$

$$1 \rightarrow^{a} b = 1 \rightarrow^{b} a,$$

$$1 \rightarrow^{a} (1 \rightarrow^{b} c) = 1 \rightarrow^{c} (1 \rightarrow^{a} b),$$

$$1 \rightarrow^{a} b \leq c \quad iff \quad a \leq b \rightarrow^{1} c$$

$$c \in L. \text{ Then, } \mathbf{L}' = \langle L, \wedge, \vee, \otimes, \rightarrow, 0, 1 \rangle, \text{ where } a \otimes b = 1 \rightarrow^{a} b \text{ and}$$

for all $a, b, c \in L$. Then, $\mathbf{L}' = \langle L, \wedge, \vee, \otimes, \rightarrow, 0, 1 \rangle$, where $a \otimes b = 1 \Rightarrow a \Rightarrow b = a \Rightarrow^1 b$ for all $a, b \in L$, is a residuated lattice.

corollary:

The class of all bounded lattices with \rightarrow satisfying the conditions above is a variety which is term equivalent to the variety of residuated lattices.

Theorem (properties of operations \otimes , \cap , \cup , \rightarrow)

If L is prelinear or divisible, then

If \mathcal{D} is nonranked, then

$$(\mathcal{D}_1 \cup \mathcal{D}_2) \to^{\mathcal{D}} \mathcal{D}_3 = (\mathcal{D}_1 \to^{\mathcal{D}} \mathcal{D}_3) \cap (\mathcal{D}_2 \to^{\mathcal{D}} \mathcal{D}_3)$$

$$(\mathcal{D}_1 \twoheadrightarrow^{\mathcal{D}} \mathcal{D}_2) \otimes (\mathcal{D}_2 \twoheadrightarrow^{\mathcal{D}} \mathcal{D}_3) \subseteq \mathcal{D}_1 \twoheadrightarrow^{\mathcal{D}} \mathcal{D}_3.$$

If \mathbf{L} is prelinear, then

 $(\mathcal{D}_1 \cap \mathcal{D}_2) \twoheadrightarrow^{\mathcal{D}} \mathcal{D}_3 = (\mathcal{D}_1 \twoheadrightarrow^{\mathcal{D}} \mathcal{D}_3) \cup (\mathcal{D}_2 \twoheadrightarrow^{\mathcal{D}} \mathcal{D}_3).$

Natural Join

Definition (equality-based natural join)

If \mathcal{D}_1 is an RDT on relation scheme $R \cup S$ and \mathcal{D}_2 is an RDT of relation scheme $S \cup T$ such that $R \cap S = R \cap T = S \cap T = \emptyset$ (i.e., R, S, and T are pairwise disjoint), then the (equality-based) natural join of \mathcal{D}_1 and \mathcal{D}_2 is an RDT $\mathcal{D}_1 \bowtie \mathcal{D}_2$ on relation scheme $R \cup S \cup T$ defined by

$$(\mathcal{D}_1 \bowtie \mathcal{D}_2)(rst) = \mathcal{D}_1(rs) \otimes \mathcal{D}_2(st),$$

for each $r \in \text{Tupl}(R)$, $s \in \text{Tupl}(S)$, and $t \in \text{Tupl}(T)$.

special cases:

- *cross join*: special case for $S = \emptyset$
- \otimes *-intersection*: special case for $R = \emptyset$ and $T = \emptyset$

basic properties:

- \bowtie is *commutative* and *associative* (not indempotent in general); notation $\bowtie_{i=1}^{n} \mathcal{D}_{i}$
- 0_{\emptyset} is annihilator; 1_{\emptyset} is neutral element

Notes on Natural Joins

size of natural and cross joins:

- $|\mathcal{D}_1 \bowtie \mathcal{D}_2| \le |\mathcal{D}_1| \cdot |\mathcal{D}_2|$
- but the converse inequality does not hold in general (not even in case of RDTs on disjoint relaiton schemes)

equality-based restriction via natural joins:

$$(\mathcal{D} \bowtie [y:d])(r) = \begin{cases} \mathcal{D}(r), & \text{if } r(y) = d, \\ 0, & \text{otherwise} \end{cases}$$

for all $r \in \operatorname{Tupl}(R)$

consequences:

- $\mathcal{D} \bowtie [y:d] =$ equality-based restriction of \mathcal{D} consisting of tuples with y-values d
- $\bullet\,$ ranks of those tuples in ${\cal D}$ are preserved

Projection

captures: existentially quantified queries (some A is B)

Definition (projection)

If \mathcal{D} is an RDT on T, the **projection** $\pi_R(\mathcal{D})$ of \mathcal{D} onto $R \subseteq T$ is defined by

$$(\pi_R(\mathcal{D}))(r) = \bigvee_{s \in \operatorname{Tupl}(T \setminus R)} \mathcal{D}(rs),$$

for each $r \in \operatorname{Tupl}(R)$.

special cases:

- $(\pi_{\emptyset}(\mathcal{D}))(\emptyset) = \bigvee_{t \in \operatorname{Tupl}(T)} \mathcal{D}(t)$
- $\pi_T(\mathcal{D}) = \mathcal{D}$ (if \mathcal{D} is RDT on relation scheme T)

Theorem (selected properties of projection)

For any $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}$ on R:

- **1** if $R_1 \subseteq R_2$, then $\pi_{R_1}(\pi_{R_2}(\mathcal{D})) = \pi_{R_1}(\mathcal{D})$,
- $\ 2 \ \pi_R(\mathcal{D}_1 \cup \mathcal{D}_2) = \pi_R(\mathcal{D}_1) \cup \pi_R(\mathcal{D}_2),$
- $\ \bullet \ \ \pi_R(\mathcal{D}_1\otimes\mathcal{D}_2)\subseteq\pi_R(\mathcal{D}_1)\otimes\pi_R(\mathcal{D}_2),$

Let \mathcal{D}_1 and \mathcal{D}_2 be RDTs on relation schemes $R \cup S$ and $S \cup T$ such that

 $R \cap S = R \cap T = S \cap T = \emptyset$. Furthermore, let $\{\mathcal{D}_i | i \in I\}$ be a finite set of RDTs on R_i $(i \in I)$, and let \mathcal{D} be an RDT on $R = \bigcup_{i \in I} R_i$. Then,

- **§** if \mathcal{D} is idempotent, then $\mathcal{D} \subseteq \bowtie_{i \in I} \pi_{R_i}(\mathcal{D})$.

semijoin: $\mathcal{D}_1 \ltimes \mathcal{D}_2 = \pi_{R \cup S}(\mathcal{D}_1 \bowtie \mathcal{D}_2) = \mathcal{D}_1 \bowtie \pi_S(\mathcal{D}_2)$

Residuated Division

captures: universaly quantified queries (all A's are B's)

Definition (residuated division)

Let \mathcal{D}_1 be an RDT on R, let \mathcal{D}_2 be an RDT on $S \subseteq R$, and let \mathcal{D}_3 be an RDT on $T = R \setminus S$. Then, a **division** $\mathcal{D}_1 \div^{\mathcal{D}_3} \mathcal{D}_2$ of \mathcal{D}_1 by \mathcal{D}_2 which ranges over \mathcal{D}_3 is an RDT on T defined by

$$(\mathcal{D}_1 \div^{\mathcal{D}_3} \mathcal{D}_2)(t) = \bigwedge_{s \in \mathrm{Tupl}(S)} (\mathcal{D}_2(s) \twoheadrightarrow^{\mathcal{D}_3(t)} \mathcal{D}_1(st)),$$

for each $t \in \operatorname{Tupl}(T)$.

meaning:

 D_2 reliable suppliers, D_3 solvent customers, D_1 suppliers frequently used by customers, result = solvent customers frequently using all reliable suppliers

special cases:

• graded containment: $(\mathcal{D}_1 \div^{1_{\emptyset}} \mathcal{D}_2)(\emptyset) = \bigwedge_{r \in \operatorname{Tupl}(R)} (\mathcal{D}_2(r) \to \mathcal{D}_1(r))$

Derived Notions

subsethood and **similarity** degrees (note the role of a_{\emptyset} and $a \in L$):

$$S(\mathcal{D}_1, \mathcal{D}_2) = \left(\mathcal{D}_2 \div^{1_{\emptyset}} \mathcal{D}_1\right)(\emptyset)$$

$$E(\mathcal{D}_1, \mathcal{D}_2) = S(\mathcal{D}_1, \mathcal{D}_2) \land S(\mathcal{D}_2, \mathcal{D}_1)$$

degrees of joinability:

Let \mathcal{D}_i be RDTs on relation schemes R_i ($i \in I$ for finite I). Then

$$Jnd(\{\mathcal{D}_i \mid i \in I\}) = \bigwedge_{i \in I} S(\mathcal{D}_i, \pi_{R_i}(\bowtie_{j \in I} \mathcal{D}_j))$$

is a **degree of joinability** of RDTs \mathcal{D}_i $(i \in I)$; RDTs \mathcal{D}_i $(i \in I)$ **join completely** if $Jnd(\{\mathcal{D}_i | i \in I\}) = 1$

degrees of decomposability:

Let \mathcal{D} be an RDT on relation schemes $R = \bigcup_{i \in I} R_i$ where I is finite. Then

$$Dcd(\mathcal{D}, \{R_i \mid i \in I\}) = E(\mathcal{D}, \bowtie_{i \in I} \pi_{R_i}(\mathcal{D}))$$

is a **degree of decomposability** of \mathcal{D} with respect to R_i ($i \in I$); \mathcal{D} has a **nonloss decomposition** if $Dcd(\mathcal{D}, \{R_i | i \in I\}) = 1$

Concept-Forming Operators Induced by RDTs

Definition

For an RDT D_1 on R; $S \subseteq R$, $T = R \setminus S$; and nonranked RDTs D_y on $\{y\}$ ($y \in R$), put

$$f_{\mathcal{D}_1,\{\mathcal{D}_y \mid y \in R\}}^{S,T}(\mathcal{D}_2) = \mathcal{D}_1 \div^{\bowtie_{y \in T}\mathcal{D}_y} \mathcal{D}_2$$

for any \mathcal{D}_2 on S.

notes:

- \mathcal{D}_1 and \mathcal{D}_y ($y \in R$) induce $f_{\mathcal{D}_1, \{\mathcal{D}_y \mid y \in R\}}^{S,T}$ with respect to S and T (in this order)
- dyadic case: for $R = \{x, y\}$, \mathcal{D}_x , \mathcal{D}_y , $\mathcal{D} \subseteq \mathcal{D}_x \bowtie \mathcal{D}_y$, $\mathcal{D}_A \subseteq \mathcal{D}_x$, and $\mathcal{D}_B \subseteq \mathcal{D}_y$:

$$f_{\mathcal{D},\{\mathcal{D}_x,\mathcal{D}_y\}}^{\{x\},\{y\}}(\mathcal{D}_A) = \mathcal{D} \div^{\mathcal{D}_y} \mathcal{D}_A, \qquad f_{\mathcal{D},\{\mathcal{D}_x,\mathcal{D}_y\}}^{\{y\},\{x\}}(\mathcal{D}_B) = \mathcal{D} \div^{\mathcal{D}_x} \mathcal{D}_B,$$

express concept-forming operators (denoted by \uparrow and \downarrow) used in the dyadic FCA of object-attribute relational data with graded attributes (generalizes to *n*-adic case)

Similarity-Based Restriction

Definition (similarity-based restriction)

For any attributes $y_1, y_2 \in R$ with the same domains with similarity we define the similarity-based restriction $\sigma_{y_1 \approx y_2}(\mathcal{D})$ of \mathcal{D} by $y_1 \approx y_2$ which is an RDT on R defined by

$$(\sigma_{y_1 \approx y_2}(\mathcal{D}))(r) = \mathcal{D}(r) \otimes r(y_1) \approx_{y_1} r(y_2),$$

for all $r \in \operatorname{Tupl}(R)$.

representation by natural joins: $\sigma_{y_1 \approx y_2}(\mathcal{D}) = \mathcal{D} \bowtie \mathcal{D}_{y_1 \approx y_2}$, where for all $r \in \text{Tupl}(R)$,

$$\mathcal{D}_{y_1 \approx y_2}(r(\{y_1, y_2\})) = \begin{cases} r(y_1) \approx_{y_1} r(y_2), & \text{if } \mathcal{D}(r) > 0, \\ 0, & \text{otherwise.} \end{cases}$$

restriction based on domain values:

$$(\sigma_{y \approx d}(\mathcal{D}))(r) = \mathcal{D}(r) \otimes r(y) \approx_y d$$

derived operation:

$$\sigma_{y\approx d}(\mathcal{D}) = \pi_R(\sigma_{y\approx y'}(\mathcal{D}\bowtie[y':d])).$$

Theorem (properties of similarity-based restrictions)

The following are true (if both left and right-hand sides exist):

If L is prelinear or divisible, then

Kernel and Support

Definition (kernel and support)

For any RDT \mathcal{D} on relation scheme R, the **kernel** $\Delta \mathcal{D}$ and **support** $\nabla \mathcal{D}$ of \mathcal{D} are RDTs on R defined by

$$(\Delta \mathcal{D})(r) = \begin{cases} 1, & \text{if } \mathcal{D}(r) = 1, \\ 0, & \text{otherwise,} \end{cases} \qquad (\nabla \mathcal{D})(r) = \begin{cases} 1, & \text{if } \mathcal{D}(r) > 0, \\ 0, & \text{otherwise,} \end{cases}$$

for all $r \in \operatorname{Tupl}(R)$.

notes:

- express non-ranked RDT from general ones
- notation by M. Baaz (projections and relativizations)
- *kernel* (interior operator); ΔD is the greatest nonranked RDT such that $\Delta D \subseteq D$
- *support* (closure operator); ∇D is the least nonranked RDT such that $D \subseteq \nabla D$
- two borderline cases of other possibilities (monotone and indepotent operators)

Theorem (properties of Δ and ∇)

The following are true (if both left and right-hand sides exist):

$$2 \Delta \mathcal{D}_1 \cap \mathcal{D}_2 = \Delta \mathcal{D}_1 \cap \Delta \mathcal{D}_2, \, \nabla \mathcal{D}_1 \cap \mathcal{D}_2 \subseteq \nabla \mathcal{D}_1 \cap \nabla \mathcal{D}_2,$$

$$\ \, {\bf 0} \ \, \Delta \mathcal{D}_1 \cup \mathcal{D}_2 \supseteq \Delta \mathcal{D}_1 \cup \Delta \mathcal{D}_2, \, \nabla \mathcal{D}_1 \cup \mathcal{D}_2 = \nabla \mathcal{D}_1 \cup \nabla \mathcal{D}_2, \\$$

$$\begin{array}{l} \bullet \quad \Delta \mathcal{D}_1 \twoheadrightarrow^{\mathcal{D}_3} \mathcal{D}_2 \subseteq \Delta \mathcal{D}_1 \twoheadrightarrow^{\Delta \mathcal{D}_3} \Delta \mathcal{D}_2, \\ \Delta \mathcal{D}_1 \twoheadrightarrow^{\mathcal{D}_3} \mathcal{D}_2 \subseteq \nabla \mathcal{D}_1 \twoheadrightarrow^{\Delta \mathcal{D}_3} \nabla \mathcal{D}_2 \subseteq \nabla \mathcal{D}_1 \twoheadrightarrow^{\nabla \mathcal{D}_3} \nabla \mathcal{D}_2 \end{array}$$

$$\begin{array}{l} \bullet \quad \Delta \mathcal{D}_1 \div^{\mathcal{D}_3} \mathcal{D}_2 \subseteq \Delta \mathcal{D}_1 \div^{\Delta \mathcal{D}_3} \Delta \mathcal{D}_2, \\ \Delta \mathcal{D}_1 \div^{\mathcal{D}_3} \mathcal{D}_2 \subseteq \nabla \mathcal{D}_1 \div^{\Delta \mathcal{D}_3} \nabla \mathcal{D}_2 \subseteq \nabla \mathcal{D}_1 \div^{\nabla \mathcal{D}_3} \nabla \mathcal{D}_2 \end{array}$$

3
$$\Delta \sigma_{\theta}(\mathcal{D}) \subseteq \sigma_{\theta}(\Delta \mathcal{D}), \ \Delta \sigma_{\theta}(\mathcal{D}) = \Delta \sigma_{\theta}(\Delta \mathcal{D}).$$

If **L** is linear, then

 $\Delta \pi_R(\mathcal{D}) = \pi_R(\Delta \mathcal{D}).$

Renaming

usual operation of renaming attributes:

Definition (renaming attributes)

For an RDT \mathcal{D} on R and an injective map $h: R \to Y$ such that for all $y \in R$, the attributes h(y) and y have identical domains with equalities, we define a **renaming** $\rho_h(\mathcal{D})$ of \mathcal{D} by h as an RDT on $h(R) = \{h(y) | y \in R\}$ by $(\rho_h(\mathcal{D}))(h(r)) = \mathcal{D}(r)$, where $h(r) \in \text{Tupl}(h(R))$ such that (h(r))(h(y)) = r(y) for each attribute $y \in R$.

notation: $\rho_{h(y_1),\dots,h(y_n)\leftarrow y_1,\dots,y_n}(\mathcal{D})$ means $\rho_h(\mathcal{D})$ if $R = \{y_1,\dots,y_n\}$

• we omit *i*th component in $y_1, \ldots, y_n \leftarrow h(y_1), \ldots, h(y_n)$ whenever $h(y_i) = y_i$

References

Belohlavek, R. 2002.

Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic Publishers, Norwell, MA, USA.

DATE, C. J. AND DARWEN, H. 2006. Databases, Types, and The Relational Model: The Third Manifesto, 3rd ed. Addison-Wesley.

GOGUEN, J. A. 1979. The logic of inexact concepts. *Synthese 19*, 325–373.

📔 На́јек, Р. 1998.

Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, The Netherlands.

MAIER, D. 1983. Theory of Relational Databases. Computer Science Pr, Rockville, MD, USA.

To Be Continued ...

second part:

- types, domains, database instances
- formalization of queries
- relation algebra as query language
- domain relational calculus
- relational completeness
- derived operations
- further extensions
- notes