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Relational Similarity-Based Databases

general relational model of data:

generalization of the classic RM (E. F. Codd)

similarity relations on domains

ranks assigned to tuples

motivation:
...1 similarity-based queries

“Show all houses that are sold for $600,000.”
...2 approximate dependencies in data
“Do houses in similar locations have similar prices?”

goal:

rank-aware approach with solid logical foundations (logics of residuated structures)

focus on all DB aspects (foundations, querying, dependencies, algorithms,…)
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Similarity-Based Query: An Example

id type location built bdrm sqft price
45 Single Family Green St 1979 3 1180 $754,000
66 Ranch Fulton St 1977 2 2400 $998,000
78 Single Family Purdue Ave 1962 4 1360 $850,000
81 Residential Hamilton Ave 1961 5 1450 $986,000
82 Condominium Fulton St 1998 2 650 $540,000
87 Single Family Bryant St 1927 3 1230 $854,000
95 Log Cabin Schembri Ln 1936 2 750 $754,000
97 Penthouse Cabrillo St 1984 1 932 $720,000
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Similarity-Based Query: An Example

id type location built bdrm sqft price
0.890 82 Condominium Fulton St 1998 2 650 $540,000
0.595 97 Penthouse Cabrillo St 1984 1 932 $720,000
0.535 87 Single Family Bryant St 1927 3 1230 $854,000
0.487 66 Ranch Fulton St 1977 2 2400 $998,000
0.472 45 Single Family Green St 1979 3 1180 $754,000
0.277 81 Residential Hamilton Ave 1961 5 1450 $986,000
0.213 95 Log Cabin Schembri Ln 1936 2 750 $754,000

.... .. .. .. .. ..

“Show houses located in Old Palo Alto and sold for $600,000.”
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.
Example (“Show houses with prices similar to $600,000” in SQL)
..

......

CREATE TABLE house (
...
price NUMERIC NOT NULL

);

INSERT INTO house VALUES · · ·

CREATE FUNCTION sim (NUMERIC, NUMERIC) RETURNS NUMERIC AS
'SELECT least (1, greatest (0, 1 + abs ($1 - $2) / -200000.0));'
LANGUAGE SQL;

SELECT *, sim (price, 600000) AS rank
FROM house
ORDER BY sim DESC
LIMIT 5;
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Preliminaries from the Classic RM

attributes = names for columns of ranked data tables

Y : denumerable set of all attributes
attributes denoted y, y′, y1, y2, . . .

relation schemes = finite subsets R ⊆ Y

relation schemes determine table columns (as in the Codd model)

cartesian (direct) product =

set
∏

i∈I Ai of all maps f : I →
∪

i∈I Ai such that f(i) ∈ Ai for all i ∈ I

(for given I-indexed set {Ai | i ∈ I} of sets)
domains =

sets of attribute values (Dy is domain of y ∈ Y )

tuples =

elements of
∏

y∈R Dy (R ⊆ Y )

denoted r ∈ Tupl(R) (r is tuple on R over Dy ’s); r(y) is called y-value of r
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Motivation for Our Approach (1 of 3)

we want:

similarity-based queries answered by imprecise matches

generalized RM:

Shift from two-element Boolean algebra to (complete) residuated lattices

Structure of matches in the classic RM =⇒ the generalized RM

starting with the classic RM: D on R can be viewed:

D :
∏

y∈R Dy → {0, 1}

so that for only finitely many tuples r ∈
∏

y∈R Dy: D(r) = 1.

interpretation (if D is answer to Q)
D(r) = 1 means “the tuple r matches the query Q”
D(r) = 0 means “the tuple r does not match the query Q”
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Motivation for Our Approach (2 of 3)
take a partially ordered set ⟨L,≤, 0⟩ instead of ⟨{0, 1},≤⟩:

D :
∏

y∈R Dy → L (ranked data table, an RDT)

so that for only finitely many tuples r ∈
∏

y∈R Dy: D(r) ̸= 0

desirable properties of L and ≤:

lower and upper bound in L (0 for no match, 1 for full match),

⟨L,≤⟩ is a complete lattice;

additional operations on L to aggregate degrees.

conjunctive aggregator⊗motivated by natural join (for D1 on R∪S and D2 on S ∪T ):

(D1 ▷◁ D2)(rst) = D1(rs)⊗D2(st) , (R,S, T are pairwise disjoint)

with ⊗ : {0, 1}2 → {0, 1} defined by 1⊗ 1 = 1 and 1⊗ 0 = 0⊗ 1 = 0⊗ 0 = 0
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Motivation for Our Approach (3 of 3)

in our setting: ⊗ : L2 → L such that ⟨L,⊗, 1⟩ is a commutative monoid and ⊗ is
distributive w.r.t.

∨
(stronger condition than monotony):

a⊗
∨
i∈I bi =

∨
i∈I(a⊗ bi)

which is equivalent to: ⟨L,⊗, 1⟩ is a commutative monoid and there is (uniquely given)
→: L2 → L such that

a⊗ b ≤ c iff a ≤ b→ c (adjointness property)

altogether: L = ⟨L,∧,∨,⊗,→, 0, 1⟩ is a (complete) residuated lattice, i.e.

⟨L,∧,∨, 0, 1⟩… (complete) lattice,

⟨L,⊗, 1⟩… commutative monoid,

⟨⊗,→⟩… adjoint pair (a⊗ b ≤ c iff a ≤ b→ c).
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Residuated Structures in Fuzzy Logics

fuzzy logic in broad sense: any application of fuzzy approach in modeling
Zadeh L A.: Fuzzy sets. Inf. Control (1965)
simple observations on handling of vagueness

fuzzy logic in narrow sense: mathematical fuzzy logic
Hájek P.: Metamathematics of Fuzzy Logic. (1998)
Basic Logic (BL-logic), propositional/predicate; logic of continuous t-norms

Höhle, Esteva, Godo, Gottwald, Montagna,…
various logical calculi (MTL-logic)

basic principles:

adjointness derived from graded modus ponens

propositions allowed to have “intermediate truth degrees”, like:

||value x is similar to value y||M = 0.9

our case: ||φ||M,v (φ formula; M database instance; v induced by tuples)
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Domains with Similarities

similarity relations on domains (needed for approximate matches)
each domain Dy equipped with map ≈y: Dy ×Dy → L satisfying:

(Ref) for each d ∈ Dy: d ≈y d = 1,

(Sym) for each d1, d2 ∈ Dy: d1 ≈y d2 = d2 ≈y d1, and (optionally):

(Sep) for each d1, d2 ∈ Dy: d1 ≈y d2 = 1 iff d1 equals d2, and

(Tra) for each d1, d2, d3 ∈ Dy: d1 ≈y d2 ⊗ d2 ≈y d3 ≤ d1 ≈y d3.

so-called similarity relation

domain with similarity = ⟨Dy,≈y⟩, where
Dy is domain of attribute y ∈ Y ;
≈y is similarity on Dy.

notes:

interpretation: u ≈y v = degree to which u and v are similar

boundary case: strict identity
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Ranked Data Tables over Domains with Similarities

central notion to our model:

formal counterpart to relations on relation schemes from Codd’s model

in mathematical fuzzy logic: interpretations of relation symbols

.
Definition (ranked data table)
..

......

Let R ⊆ Y be a relation scheme and each ⟨Dy,≈y⟩ be a domain with similarity (y ∈ R).
A ranked data table on R over {⟨Dy,≈y⟩ | y ∈ R} is any map D : Tupl(R)→ L so that
for only finitely many tuples r ∈

∏
y∈R Dy: D(r) ̸= 0.

notes:

RDTs are denoted D,D′,D1, . . .

RDT on R over {⟨Dy,≈y⟩ | y ∈ R} = fuzzy relation between Dy

degree D(r) is called a rank of r in D
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Special Cases of RDTs

two important special cases:

.
Definition (RDTs on empty relation schemes)
..
......For each a ∈ L, define a∅ = {⟨∅, a⟩}.

.
Definition (singleton RDTs)
..
......For each y ∈ Y and d ∈ Dy, define [y:d] = {⟨{⟨y, d⟩}, 1⟩}.

notes:

a∅ is RDT on R = ∅ such that a∅(∅) = a

(C. J. Date: 0∅ = TABLE_DUM, 1∅ = TABLE_DEE)

[y:d] is RDT on R = {y} such that [y:d](r) =
{
1, if r(y) = d,
0, otherwise
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Notes on Generalization of Codd’s Model of Data

classic relational model results by:

taking two-valued Boolean algebra for L (complete residuated lattice);

considering each ≈y to be identity relation on Dy

consequence: all ranks become 1 (match) and 0 (no match)

nonranked RDT

all ranks are from {0, 1} ⊆ L, L is arbitrary;

stored data prior to querying;

.
Important feature of our model: stored data = results of queries
..

......

RDTs represent both

stored data, and

results of queries.
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Notes on Domain Similarities and Ranks

Where do similarities come from?
can be assigned by an expert:
finite L or a finite subset of infinite linear L;
Likert scale L = {1, . . . , 5} of degrees of satisfaction (Miller’s 7± 2 phenomenon);

can be determined based on “distance”:
L on [0, 1] with ⊗ being continuous Archimedean t-norm;
(pseudo)metric Z=⇒ ⊗-transitive similarity;

similarities are purpose dependent;

implementation remark: can be stored (as data) / computed on demand.

Where do ranks come from?

appear from nonranked data after performing similarity-based queries,

can be assigned by experts,

important aspect: comparative meaning of truth degrees.
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.
Example (similarity on domain of “house prices”)
..

......

...

$1,000,000

.

$0

d1 ≈price d2 = s
(
| logb d1 − logb d2|

)
b = 1 + 10−4

s(x) = 1− x · 10−4

example:

$1,000 ≈price $2,000 = 0.306

$100,000 ≈price $101,000 = 0.990
...

...
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.
Example (similarity on domain of “construction years”)
..

......

...

2000

.

1800

d1 ≈year d2 = s
(
|d1 − d2|

)
s(x) = 1− x · 150−1

example:

1800 ≈year 1840 = 0.733

1960 ≈year 2000 = 0.733
...

...
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.
Example (similarity on domain of “property types”)
..

......

...

Condominium

.

Log Cabin

.

Penthouse
.

Ranch
.

Residential

.

Single Family
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Operations with RDTs

goal:

propose set of (basic) operations with RDTs

purpose: querying by performing operations with RTDs (relation algebra)

questions: basic/derived operations, expressive power,…

groups of operations in our model:

counterparts to boolean operations (union, intersection, residuum)

natural join (and cross join)

projection and residuated division

similarity-based restrictions

kernel and support

renaming attributes

derived operations and extensions (II. part)
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Counterparts to Boolean Intersection and Union
.
Definition
..

......

For RDTs D1 and D2 on relation scheme R, we define

(D1 ∪ D2)(r) = D1(r) ∨ D2(r),

(D1 ∩ D2)(r) = D1(r) ∧ D2(r),

(D1 ⊗D2)(r) = D1(r)⊗D2(r),

for all tuples r on R. D1 ∪ D2 is called a union of D1 and D2; D1 ∩ D2 and D1 ⊗D2 are
called the ∧-intersection and ⊗-intersection of D1 and D2, respectively.

idempotent vs. non-indempotent conjunction:

RDT D on relation scheme R is called idempotent (with respect to ⊗) if D ⊗D = D
example: for D1(r) = 0.5 and D2(r) = · · · = Dk(r) = 0.98, we distinguish:

worst-match semantics: (D1 ∩ · · · ∩ Dk)(r) = 0.5 (also if D2(r) = · · · = Dk(r) = 0.5)

all-match semantics: (D1 ⊗ · · · ⊗ Dk)(r) = 0.5 · 0.98k−1 for Goguen ⊗
(D1 ⊗ · · · ⊗ Dk)(r) = 0.5k ≪ 0.5 · 0.98k−1 if D2(r) = · · · = Dk(r) = 0.5
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Operations Based on Residuated Implication

issues with finiteness:

componentwise application of→: (D1 → D2)(r) = D1(r)→ D2(r)

if at least one Dy is infinite: (D1 → D2)(r) = 1 for infinitely many r

(one possible) solution: for arbitrary degrees a, b, c ∈ L, define b _a c ∈ L as follows:

b _a c = a⊗ (b→ c) (a-residuum of b ∈ L with respect to c ∈ L)

.
Definition (residuum of RDTs)
..

......

For RDTs D1,D2,D3 on R, we put(
D1 _D3 D2

)
(r) = D1(r) _D3(r) D2(r)

for all tuples r. D1 _D3 D2 is a residuum ofD1 with respect toD2 which ranges overD3.

note:

D1 _D3 D2 ⊆ D3 (result of _ in an RDT)
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.
Theorem (properties of _)
..

......

...1 b _1 c = b→ c,

...2 1 _a c = 1 _c a = a⊗ c,

...3 0 _a c = b _a 1 = a,

...4 b _0 c = b _b 0 = 1 _b 0 = 0,

...5 b _a c ≤ b _1 (a⊗ c),

...6 _ is monotone in the first and in the third argument,

...7 _ is antitone in the second argument,

...8 a _a b ≤ a ∧ b,

...9 if L is divisible, then a _a b = a ∧ b,

...10 if b ≤ c, then b _a c = a,

...11 if L is a linear Π-algebra, then b ≤ c iff b _a c = a for all a > 0,

...12 b _b c = c iff there is x ∈ L such that 1 _x b = c,

...13 1 _a b ≤ c iff a ≤ b _1 c.
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⟨⊗,→⟩ vs. _
.
Theorem
..

......

Let L = ⟨L,∧,∨,_, 0, 1⟩ be a structure such that ⟨L,∧,∨, 0, 1⟩ is a bounded lattice and_ be a ternary operation satisfying the following conditions:

1 _a 1 = a,

1 _a b = 1 _b a,

1 _a (1 _b c) = 1 _c (1 _a b),

1 _a b ≤ c iff a ≤ b _1 c

for all a, b, c ∈ L. Then, L′ = ⟨L,∧,∨,⊗,→, 0, 1⟩, where a⊗ b = 1 _a b and
a→ b = a _1 b for all a, b ∈ L, is a residuated lattice.

corollary:

The class of all bounded lattices with _ satisfying the conditions above is a

variety which is term equivalent to the variety of residuated lattices.
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.
Theorem (properties of operations ⊗, ∩, ∪, _)
..

......

...1 D1 ⊗ (D2 ∪ D3) = (D1 ⊗D2) ∪ (D1 ⊗D3)

If L is prelinear or divisible, then
...2 D1 ⊗ (D2 ∩ D3) = (D1 ⊗D2) ∩ (D1 ⊗D3),
...3 D1 ∩ (D2 ∪ D3) = (D1 ∩ D2) ∪ (D1 ∩ D3).

If D is nonranked, then
...4 D1 _D (D2 _D D3) = D2 _D (D1 _D D3),
...5 (D1 ⊗D2) _D D3 = D1 _D (D2 _D D3),
...6 D1 _D D2 = ((D1 _D D2) _D D2) _D D2,

...7 D1 _D (D2 ∩ D3) = (D1 _D D2) ∩ (D1 _D D3),

...8 (D1 ∪ D2) _D D3 = (D1 _D D3) ∩ (D2 _D D3),

...9 (D1 _D D2)⊗ (D2 _D D3) ⊆ D1 _D D3.

If L is prelinear, then
...10 D1 _D (D2 ∪ D3) = (D1 _D D2) ∪ (D1 _D D3),
...11 (D1 ∩ D2) _D D3 = (D1 _D D3) ∪ (D2 _D D3).
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Natural Join
.
Definition (equality-based natural join)
..

......

If D1 is an RDT on relation scheme R ∪ S and D2 is an RDT of relation scheme S ∪ T
such that R ∩ S = R ∩ T = S ∩ T = ∅ (i.e., R, S, and T are pairwise disjoint), then the
(equality-based) natural join of D1 and D2 is an RDT D1 ▷◁ D2 on relation scheme
R ∪ S ∪ T defined by (

D1 ▷◁ D2

)
(rst) = D1(rs)⊗D2(st),

for each r ∈ Tupl(R), s ∈ Tupl(S), and t ∈ Tupl(T ).

special cases:

cross join: special case for S = ∅
⊗-intersection: special case for R = ∅ and T = ∅

basic properties:

▷◁ is commutative and associative (not indempotent in general); notation ▷◁ni=1 Di

0∅ is annihilator; 1∅ is neutral element
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Notes on Natural Joins

size of natural and cross joins:

|D1 ▷◁ D2| ≤ |D1| · |D2|
but the converse inequality does not hold in general
(not even in case of RDTs on disjoint relaiton schemes)

equality-based restriction via natural joins:

(D ▷◁ [y:d])(r) =

{
D(r), if r(y) = d,
0, otherwise

for all r ∈ Tupl(R)

consequences:

D ▷◁ [y:d] = equality-based restriction of D consisting of tuples with y-values d

ranks of those tuples in D are preserved
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Projection

captures: existentially quantified queries (some A is B)
.
Definition (projection)
..

......

If D is an RDT on T , the projection πR(D) of D onto R ⊆ T is defined by

(πR(D))(r) =
∨
s∈Tupl(T\R)D(rs),

for each r ∈ Tupl(R).

special cases:(
π∅(D)

)
(∅) =

∨
t∈Tupl(T )D(t)

πT (D) = D (if D is RDT on relation scheme T )

Vychodil V. (DAMOL) Relational similarity-based databases May 9, 2013 28 / 39



.
Theorem (selected properties of projection)
..

......

For any D1,D2,D on R:

...1 if R1 ⊆ R2, then πR1(πR2(D)) = πR1(D),

...2 πR(D1 ∪ D2) = πR(D1) ∪ πR(D2),

...3 πR(D1 ∩ D2) ⊆ πR(D1) ∩ πR(D2),

...4 πR(D1 ⊗D2) ⊆ πR(D1)⊗ πR(D2),

Let D1 and D2 be RDTs on relation schemes R ∪ S and S ∪ T such that

R ∩ S = R ∩ T = S ∩ T = ∅. Furthermore, let {Di | i ∈ I} be a finite set of RDTs on Ri

(i ∈ I), and let D be an RDT on R =
∪

i∈I Ri. Then,

...5 πR∪S(D1 ▷◁ D2) = D1 ▷◁ πS(D2),

...6 πRi(▷◁j∈I Dj) ⊆ Di for all i ∈ I ,

...7 D|I| ⊆ ▷◁i∈I πRi(D),

...8 if D is idempotent, then D ⊆ ▷◁i∈I πRi(D).

semijoin: D1 ⋉ D2 = πR∪S(D1 ▷◁ D2) = D1 ▷◁ πS(D2) (⊗ is distributive over
∨
)
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Residuated Division
captures: universaly quantified queries (all A’s are B’s)

.
Definition (residuated division)
..

......

Let D1 be an RDT on R, let D2 be an RDT on S ⊆ R, and let D3 be an RDT on
T = R \ S. Then, a division D1 ÷D3 D2 of D1 by D2 which ranges over D3 is an RDT on
T defined by (

D1 ÷D3 D2

)
(t) =

∧
s∈Tupl(S)

(
D2(s) _D3(t) D1(st)

)
,

for each t ∈ Tupl(T ).

meaning:

D2 reliable suppliers, D3 solvent customers, D1 suppliers frequently used by

customers, result = solvent customers frequently using all reliable suppliers

special cases:

graded containment:
(
D1 ÷1∅ D2

)
(∅) =

∧
r∈Tupl(R)

(
D2(r)→ D1(r)

)
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Derived Notions
subsethood and similarity degrees (note the role of a∅ and a ∈ L):

S(D1,D2) =
(
D2 ÷1∅ D1

)
(∅)

E(D1,D2) = S(D1,D2) ∧ S(D2,D1)

degrees of joinability:

Let Di be RDTs on relation schemes Ri (i ∈ I for finite I). Then

Jnd({Di | i ∈ I}) =
∧

i∈I S
(
Di, πRi(▷◁j∈I Dj)

)
is a degree of joinability of RDTs Di (i ∈ I);
RDTs Di (i ∈ I) join completely if Jnd({Di | i ∈ I}) = 1

degrees of decomposability:

Let D be an RDT on relation schemes R =
∪

i∈I Ri where I is finite. Then

Dcd(D, {Ri | i ∈ I}) = E
(
D, ▷◁i∈I πRi(D)

)
is a degree of decomposability of D with respect to Ri (i ∈ I);
D has a nonloss decomposition if Dcd(D, {Ri | i ∈ I}) = 1
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Concept-Forming Operators Induced by RDTs

.
Definition
..

......

For an RDT D1 on R; S ⊆ R, T = R \ S; and nonranked RDTs Dy on {y} (y ∈ R), put

fS,T
D1,{Dy | y∈R}(D2) = D1 ÷▷◁y∈TDy D2

for any D2 on S.

notes:

D1 and Dy (y ∈ R) induce fS,T
D1,{Dy | y∈R} with respect to S and T (in this order)

dyadic case: for R = {x, y}, Dx, Dy, D ⊆ Dx ▷◁ Dy, DA ⊆ Dx, and DB ⊆ Dy:

f
{x},{y}
D,{Dx,Dy}(DA) = D ÷Dy DA, f

{y},{x}
D,{Dx,Dy}(DB) = D ÷Dx DB,

express concept-forming operators (denoted by ↑ and ↓) used in the dyadic FCA of
object-attribute relational data with graded attributes (generalizes to n-adic case)
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Similarity-Based Restriction
.
Definition (similarity-based restriction)
..

......

For any attributes y1, y2 ∈ R with the same domains with similarity we define the
similarity-based restriction σy1≈y2(D) of D by y1 ≈ y2 which is an RDT on R defined by

(σy1≈y2(D))(r) = D(r)⊗ r(y1) ≈y1 r(y2),

for all r ∈ Tupl(R).

representation by natural joins: σy1≈y2(D) = D ▷◁ Dy1≈y2 , where for all r ∈ Tupl(R),

Dy1≈y2(r({y1, y2})) =
{
r(y1) ≈y1 r(y2), if D(r) > 0,
0, otherwise.

restriction based on domain values:

(σy≈d(D))(r) = D(r)⊗ r(y) ≈y d

derived operation:
σy≈d(D) = πR(σy≈y′(D ▷◁ [y′:d])).
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.
Theorem (properties of similarity-based restrictions)
..

......

The following are true (if both left and right-hand sides exist):

...1 πS(σy≈z(D)) = σy≈z(πS(D)) if D is an RDT on R and R ∩ {y, z} ⊆ S,

...2 σy≈z(D1 ▷◁ D2) = σy≈z(D1) ▷◁ D2 if D2 is an RDT on R2 and {y, z} ∩R2 = ∅,

...3 σθ(D1 ∪ D2) = σθ(D1) ∪ σθ(D2),

...4 σθ(D1 ∩ D2) ⊆ σθ(D1) ∩ D2,

...5 σθ(D1 ⊗D2) = σθ(D1)⊗D2,

...6 D1 _σθ(D3) D2 = σθ(D1 _D3 D2).

If L is prelinear or divisible, then

...7 σθ(D1 ∩ D2) = σθ(D1) ∩ σθ(D2),

...8 D1 ÷σθ(D3) D2 = σθ(D1 ÷D3 D2).
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Kernel and Support
.
Definition (kernel and support)
..

......

For any RDT D on relation scheme R, the kernel∆D and support∇D of D are RDTs on
R defined by

(∆D)(r) =
{
1, if D(r) = 1,
0, otherwise,

(∇D)(r) =
{
1, if D(r) > 0,
0, otherwise,

for all r ∈ Tupl(R).

notes:

express non-ranked RDT from general ones

notation by M. Baaz (projections and relativizations)

kernel (interior operator); ∆D is the greatest nonranked RDT such that ∆D ⊆ D
support (closure operator); ∇D is the least nonranked RDT such that D ⊆ ∇D
two borderline cases of other possibilities (monotone and indepotent operators)
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.
Theorem (properties of ∆ and ∇)
..

......

The following are true (if both left and right-hand sides exist):

...1 ∆D1 ⊗D2 = ∆D1 ⊗∆D2, ∇D1 ⊗D2 ⊆ ∇D1 ⊗∇D2,

...2 ∆D1 ∩ D2 = ∆D1 ∩∆D2, ∇D1 ∩ D2 ⊆ ∇D1 ∩∇D2,

...3 ∆D1 ∪ D2 ⊇ ∆D1 ∪∆D2, ∇D1 ∪ D2 = ∇D1 ∪∇D2,

...4 ∆D1 _D3 D2 ⊆ ∆D1 _∆D3 ∆D2,

∆D1 _D3 D2 ⊆ ∇D1 _∆D3 ∇D2 ⊆ ∇D1 _∇D3 ∇D2

...5 ∆D1 ▷◁ D2 = ∆D1 ▷◁ ∆D2, ∇D1 ▷◁ D2 ⊆ ∇D1 ▷◁ ∇D2,

...6 ∆πR(D) ⊇ πR(∆D), ∇πR(D) = πR(∇D),

...7 ∆D1 ÷D3 D2 ⊆ ∆D1 ÷∆D3 ∆D2,

∆D1 ÷D3 D2 ⊆ ∇D1 ÷∆D3 ∇D2 ⊆ ∇D1 ÷∇D3 ∇D2

...8 ∆σθ(D) ⊆ σθ(∆D), ∆σθ(D) = ∆σθ(∆D).
If L is linear, then

...9 ∇D1 ∩ D2 = ∇D1 ∩∇D2, ∆D1 ∪ D2 = ∆D1 ∪∆D2,

...10 ∆πR(D) = πR(∆D).
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Renaming

usual operation of renaming attributes:

.
Definition (renaming attributes)
..

......

For an RDT D on R and an injective map h : R→ Y such that for all y ∈ R, the
attributes h(y) and y have identical domains with equalities, we define a renaming
ρh(D) of D by h as an RDT on h(R) = {h(y) | y ∈ R} by (ρh(D))(h(r)) = D(r), where
h(r) ∈ Tupl(h(R)) such that (h(r))(h(y)) = r(y) for each attribute y ∈ R.

notation: ρh(y1),...,h(yn)←y1,...,yn(D) means ρh(D) if R = {y1, . . . , yn}

we omit ith component in y1, . . . , yn ← h(y1), . . . , h(yn) whenever h(yi) = yi
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To Be Continued…

second part:

types, domains, database instances

formalization of queries

relation algebra as query language

domain relational calculus

relational completeness

derived operations

further extensions

notes
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